首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 838 毫秒
1.
A gas diffusion layer (GDL) in a polymer electrolyte fuel cell (PEFC) is quantitatively visualized using synchrotron X‐ray micro‐computed tomography. For three‐dimensional reconstruction, an adaptive threshold method is used. This method is compared with the conventional method, i.e. Otsu's method. Additionally, the spatial and temporal variations of the porosity distribution of the GDL under freeze‐and‐thaw cycles are investigated experimentally. The freeze‐and‐thaw cycles are established simply using a CRYO system and light source illumination, respectively. Structural defects are found to largely affect the porosity of the GDL. In addition, a cyclic porosity variation is observed in the GDL under freeze‐and‐thaw cycles. The heterogeneous porosity is irreversibly decreased with the progress of repetitive cycles.  相似文献   

2.
A full‐field hard X‐ray imaging beamline (BL‐4) was designed, developed, installed and commissioned recently at the Indus‐2 synchrotron radiation source at RRCAT, Indore, India. The bending‐magnet beamline is operated in monochromatic and white beam mode. A variety of imaging techniques are implemented such as high‐resolution radiography, propagation‐ and analyzer‐based phase contrast imaging, real‐time imaging, absorption and phase contrast tomography etc. First experiments on propagation‐based phase contrast imaging and micro‐tomography are reported.  相似文献   

3.
There are many objects for which the attenuation varies significantly as they are rotated during computerized X‐ray tomography, for example plate samples. This can lead to significant ring artefacts in the subsequent tomographic reconstructions. In this paper a new method is presented that can successfully suppress such ring artefacts and is applicable to both parallel and cone‐beam geometries. Rapid correction is achieved via an analytical formula which involves only a matrix‐vector multiplication, for which the matrix is known and depends on a regularization parameter. The efficacy of the method is demonstrated for a paleontological sample (calcified shark cartilage) and a carbon–carbon composite/Ti–SiC metal matrix composite test sample.  相似文献   

4.
The possibility of using a parabolic refractive lens with initial X‐ray free‐electron laser (XFEL) pulses, i.e. without a monochromator, is analysed. It is assumed that the measurement time is longer than 0.3 fs, which is the time duration of a coherent pulse (spike). In this case one has to calculate the propagation of a monochromatic wave and then perform an integration of the intensity over the radiation spectrum. Here a general algorithm for calculating the propagation of time‐dependent radiation in free space and through various objects is presented. Analytical formulae are derived describing the properties of the monochromatic beam focused by a system of one and two lenses. Computer simulations show that the European XFEL pulses can be focused with maximal efficiency, i.e. as for a monochromatic wave. This occurs even for nanofocusing lenses.  相似文献   

5.
Ring artefacts are the most disturbing artefacts when reconstructed volumes are segmented. A lot of effort has already been put into better X‐ray optics, scintillators and detectors in order to minimize the appearance of these artefacts. However, additional processing is often required after standard flat‐field correction. Several methods exist to suppress artefacts. One group of methods is based on minimization of the Tikhonov functional. An analytical formula for processing of a single sinogram was developed. In this paper a similar approach is used and a formula for processing two‐dimensional projections is found. Thus suppression of ring artefacts is organized as a two‐dimensional convolution of `averaged' projections with a given filter. Several approaches are discussed in order to find elements of the filter in a faster and accurate way. Examples of experimental datasets processed by the proposed method are considered.  相似文献   

6.
The quantification of micro‐vasculatures is important for the analysis of angiogenesis on which the detection of tumor growth or hepatic fibrosis depends. Synchrotron‐based X‐ray computed micro‐tomography (SR‐µCT) allows rapid acquisition of micro‐vasculature images at micrometer‐scale spatial resolution. Through skeletonization, the statistical features of the micro‐vasculature can be extracted from the skeleton of the micro‐vasculatures. Thinning is a widely used algorithm to produce the vascular skeleton in medical research. Existing three‐dimensional thinning methods normally emphasize the preservation of topological structure rather than geometrical features in generating the skeleton of a volumetric object. This results in three problems and limits the accuracy of the quantitative results related to the geometrical structure of the vasculature. The problems include the excessively shortened length of elongated objects, eliminated branches of blood vessel tree structure, and numerous noisy spurious branches. The inaccuracy of the skeleton directly introduces errors in the quantitative analysis, especially on the parameters concerning the vascular length and the counts of vessel segments and branching points. In this paper, a robust method using a consolidated end‐point constraint for thinning, which generates geometry‐preserving skeletons in addition to maintaining the topology of the vasculature, is presented. The improved skeleton can be used to produce more accurate quantitative results. Experimental results from high‐resolution SR‐µCT images show that the end‐point constraint produced by the proposed method can significantly improve the accuracy of the skeleton obtained using the existing ITK three‐dimensional thinning filter. The produced skeleton has laid the groundwork for accurate quantification of the angiogenesis. This is critical for the early detection of tumors and assessing anti‐angiogenesis treatments.  相似文献   

7.
This paper presents a theoretical investigation of the propagation characteristics of a q‐Gaussian laser beam propagating through a plasma channel created by the ignitor‐heater technique. The ignitor beam creates the plasma by tunnel‐ionization of air. The heater beam heats the plasma electrons and establishes a parabolic channel. The third beam (q‐Gaussian beam) is guided in the plasma channel under the combined effects of density non‐uniformity and non‐uniform ohmic heating of the plasma channel. Numerical solutions of the non‐linear Schrodinger wave equation (NSWE) for the fields of laser beams are obtained with the help of the moment theory approach. Particular emphasis is placed on the dynamical variations of the spot size of the laser beams and the longitudinal phase shift of the guided beam with the distance of propagation.  相似文献   

8.
A systematic study is presented in which multilayers of different composition (W/Si, Mo/Si, Pd/B4C), periodicity (from 2.5 to 5.5 nm) and number of layers have been characterized. In particular, the intrinsic quality (roughness and reflectivity) as well as the performance (homogeneity and coherence of the outgoing beam) as a monochromator for synchrotron radiation hard X‐ray micro‐imaging are investigated. The results indicate that the material composition is the dominating factor for the performance. By helping scientists and engineers specify the design parameters of multilayer monochromators, these results can contribute to a better exploitation of the advantages of multilayer monochromators over crystal‐based devices; i.e. larger spectral bandwidth and high photon flux density, which are particularly useful for synchrotron‐based micro‐radiography and ‐tomography.  相似文献   

9.
A method is presented to simplify Bragg coherent X‐ray diffraction imaging studies of complex heterogeneous crystalline materials with a two‐stage screening/imaging process that utilizes polychromatic and monochromatic coherent X‐rays and is compatible with in situ sample environments. Coherent white‐beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three‐dimensional reciprocal‐space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.  相似文献   

10.
For spectral imaging of chemical distributions using X‐ray absorption near‐edge structure (XANES) spectra, a modified double‐crystal monochromator, a focusing plane mirrors system and a newly developed fluorescence‐type X‐ray beam‐position monitoring and feedback system have been implemented. This major hardware upgrade provides a sufficiently stable X‐ray source during energy scanning of more than hundreds of eV for acquisition of reliable XANES spectra in two‐dimensional and three‐dimensional images. In recent pilot studies discussed in this paper, heavy‐metal uptake by plant roots in vivo and iron's phase distribution in the lithium–iron–phosphate cathode of a lithium‐ion battery have been imaged. Also, the spatial resolution of computed tomography has been improved from 70 nm to 55 nm by means of run‐out correction and application of a reconstruction algorithm.  相似文献   

11.
A small‐angle X‐ray scattering (SAXS) set‐up has recently been developed at beamline I711 at the MAX II storage ring in Lund (Sweden). An overview of the required modifications is presented here together with a number of application examples. The accessible q range in a SAXS experiment is 0.009–0.3 Å?1 for the standard set‐up but depends on the sample‐to‐detector distance, detector offset, beamstop size and wavelength. The SAXS camera has been designed to have a low background and has three collinear slit sets for collimating the incident beam. The standard beam size is about 0.37 mm × 0.37 mm (full width at half‐maximum) at the sample position, with a flux of 4 × 1010 photons s?1 and λ = 1.1 Å. The vacuum is of the order of 0.05 mbar in the unbroken beam path from the first slits until the exit window in front of the detector. A large sample chamber with a number of lead‐throughs allows different sample environments to be mounted. This station is used for measurements on weakly scattering proteins in solutions and also for colloids, polymers and other nanoscale structures. A special application supported by the beamline is the effort to establish a micro‐fluidic sample environment for structural analysis of samples that are only available in limited quantities. Overall, this work demonstrates how a cost‐effective SAXS station can be constructed on a multipurpose beamline.  相似文献   

12.
An understanding of the mechanical response of modern engineering alloys to complex loading conditions is essential for the design of load‐bearing components in high‐performance safety‐critical aerospace applications. A detailed knowledge of how material behaviour is modified by fatigue and the ability to predict failure reliably are vital for enhanced component performance. Unlike macroscopic bulk properties (e.g. stiffness, yield stress, etc.) that depend on the average behaviour of many grains, material failure is governed by `weakest link'‐type mechanisms. It is strongly dependent on the anisotropic single‐crystal elastic–plastic behaviour, local morphology and microstructure, and grain‐to‐grain interactions. For the development and validation of models that capture these complex phenomena, the ability to probe deformation behaviour at the micro‐scale is key. The diffraction of highly penetrating synchrotron X‐rays is well suited to this purpose and micro‐beam Laue diffraction is a particularly powerful tool that has emerged in recent years. Typically it uses photon energies of 5–25 keV, limiting penetration into the material, so that only thin samples or near‐surface regions can be studied. In this paper the development of high‐energy transmission Laue (HETL) micro‐beam X‐ray diffraction is described, extending the micro‐beam Laue technique to significantly higher photon energies (50–150 keV). It allows the probing of thicker sample sections, with the potential for grain‐level characterization of real engineering components. The new HETL technique is used to study the deformation behaviour of individual grains in a large‐grained polycrystalline nickel sample during in situ tensile loading. Refinement of the Laue diffraction patterns yields lattice orientations and qualitative information about elastic strains. After deformation, bands of high lattice misorientation can be identified in the sample. Orientation spread within individual scattering volumes is studied using a pattern‐matching approach. The results highlight the inability of a simple Schmid‐factor model to capture the behaviour of individual grains and illustrate the need for complementary mechanical modelling.  相似文献   

13.
Ring artefacts in X‐ray computerized tomography reconstructions are considered. The authors propose a ring artefact removal method based on a priori information regarding the sinogram including smoothness along the horizontal coordinate, symmetry of the first and the final rows and consideration of small perturbations during acquisition. The method does not require prior reconstruction of the original or corrected sinograms. Its numerical implementation is based on quadratic programming. Its efficacy is examined with regard to experimental data sets collected on graphite and bone.  相似文献   

14.
The simultaneous and active feedback stabilization of X‐ray beam position and monochromatic beam flux during EXAFS scans at the titanium K‐edge as produced by a double‐crystal monochromator beamline is reported. The feedback is generated using two independent feedback loops using separate beam flux and position measurements. The flux is stabilized using a fast extremum‐searching algorithm that is insensitive to changes in the synchrotron ring current and energy‐dependent monochromator output. Corrections of beam height are made using an innovative transmissive beam position monitor instrument. The efficacy of the feedback stabilization method is demonstrated by comparing the measurements of EXAFS spectra on inhomogeneous diluted Ti‐containing samples with and without feedback applied.  相似文献   

15.
The propagation within a one‐dimensional photonic crystal of a single ultra‐short and ultra‐intense pulse delivered by an X‐ray free‐electron laser is analysed with the framework of the time‐dependent coupled‐wave theory in non‐linear media. It is shown that the reflection and the transmission of an ultra‐short pulse present a transient period conditioned by the extinction length and also the thickness of the structure for transmission. For ultra‐intense pulses, non‐linear effects are expected: they could give rise to numerous phenomena, bi‐stability, self‐induced transparency, gap solitons, switching, etc., which have been previously shown in the optical domain.  相似文献   

16.
An all‐fiber laser generating a cylindrical vector beam is proposed and demonstrated using a home‐made ring‐core Yb‐doped fiber (RC‐YDF). In the RC‐YDF, not only annular doping but also ring‐type beam pump is realized. This is believed to be the first report describing the realization of annular doping and ring‐type beam pump in active fiber simultaneously, which can enhance the efficiency for high‐order mode oscillation. This laser operates in the high‐order mode stably with a slope efficiency of as high as 55.7%. Cylindrical vector modes can be obtained easily through adjusting the polarization controller. This work may have great potential for providing high‐efficiency and high‐power cylindrical vector beam and vortex beam sources.  相似文献   

17.
In structure analyses of proteins in solution by using small‐angle X‐ray scattering (SAXS), the molecular models are restored by using ab initio molecular modeling algorithms. There can be variation among restored models owing to the loss of phase information in the scattering profiles, averaging with regard to the orientation of proteins against the direction of the incident X‐ray beam, and also conformational fluctuations. In many cases, a representative molecular model is obtained by averaging models restored in a number of ab initio calculations, which possibly provide nonrealistic models inconsistent with the biological and structural information about the target protein. Here, a protocol for classifying predicted models by multivariate analysis to select probable and realistic models is proposed. In the protocol, each structure model is represented as a point in a hyper‐dimensional space describing the shape of the model. Principal component analysis followed by the clustering method is applied to visualize the distribution of the points in the hyper‐dimensional space. Then, the classification provides an opportunity to exclude nonrealistic models. The feasibility of the protocol was examined through the application to the SAXS profiles of four proteins.  相似文献   

18.
In‐line X‐ray phase‐contrast computed tomography (IL‐PCCT) can reveal fine inner structures for low‐Z materials (e.g. biological soft tissues), and shows high potential to become clinically applicable. Typically, IL‐PCCT utilizes filtered back‐projection (FBP) as the standard reconstruction algorithm. However, the FBP algorithm requires a large amount of projection data, and subsequently a large radiation dose is needed to reconstruct a high‐quality image, which hampers its clinical application in IL‐PCCT. In this study, an iterative reconstruction algorithm for IL‐PCCT was proposed by combining the simultaneous algebraic reconstruction technique (SART) with eight‐neighbour forward and backward (FAB8) diffusion filtering, and the reconstruction was performed using the Shepp–Logan phantom simulation and a real synchrotron IL‐PCCT experiment. The results showed that the proposed algorithm was able to produce high‐quality computed tomography images from few‐view projections while improving the convergence rate of the computed tomography reconstruction, indicating that the proposed algorithm is an effective method of dose reduction for IL‐PCCT.  相似文献   

19.
The first microbeam synchrotron X‐ray fluorescence (µ‐SXRF) beamline using continuous synchrotron radiation from Siam Photon Source has been constructed and commissioned as of August 2011. Utilizing an X‐ray capillary half‐lens allows synchrotron radiation from a 1.4 T bending magnet of the 1.2 GeV electron storage ring to be focused from a few millimeters‐sized beam to a micrometer‐sized beam. This beamline was originally designed for deep X‐ray lithography (DXL) and was one of the first two operational beamlines at this facility. A modification has been carried out to the beamline in order to additionally enable µ‐SXRF and synchrotron X‐ray powder diffraction (SXPD). Modifications included the installation of a new chamber housing a Si(111) crystal to extract 8 keV synchrotron radiation from the white X‐ray beam (for SXPD), a fixed aperture and three gate valves. Two end‐stations incorporating optics and detectors for µ‐SXRF and SXPD have then been installed immediately upstream of the DXL station, with the three techniques sharing available beam time. The µ‐SXRF station utilizes a polycapillary half‐lens for X‐ray focusing. This optic focuses X‐ray white beam from 5 mm × 2 mm (H × V) at the entrance of the lens down to a diameter of 100 µm FWHM measured at a sample position 22 mm (lens focal point) downstream of the lens exit. The end‐station also incorporates an XYZ motorized sample holder with 25 mm travel per axis, a 5× ZEISS microscope objective with 5 mm × 5 mm field of view coupled to a CCD camera looking to the sample, and an AMPTEK single‐element Si (PIN) solid‐state detector for fluorescence detection. A graphic user interface data acquisition program using the LabVIEW platform has also been developed in‐house to generate a series of single‐column data which are compatible with available XRF data‐processing software. Finally, to test the performance of the µ‐SXRF beamline, an elemental surface profile has been obtained for a piece of ancient pottery from the Ban Chiang archaeological site, a UNESCO heritage site. It was found that the newly constructed µ‐SXRF technique was able to clearly distinguish the distribution of different elements on the specimen.  相似文献   

20.
During the last 20 years, beamline BL08B has been upgraded step by step from a photon beam‐position monitor (BPM) to a testing beamline and a single‐grating beamline that enables experiments to record X‐ray photo‐emission spectra (XPS) and X‐ray absorption spectra (XAS) for research in solar physics, organic semiconductor materials and spinel oxides, with soft X‐ray photon energies in the range 300–1000 eV. Demands for photon energy to extend to the extreme ultraviolet region for applications in nano‐fabrication and topological thin films are increasing. The basic spherical‐grating monochromator beamline was again upgraded by adding a second grating that delivers photons of energy from 80 to 420 eV. Four end‐stations were designed for experiments with XPS, XAS, interstellar photoprocess systems (IPS) and extreme‐ultraviolet lithography (EUVL) in the scheduled beam time. The data from these experiments show a large count rate in core levels probed and excellent statistics on background normalization in the L‐edge adsorption spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号