首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
研究了CS2 分子1B2 (1Σ+u )预离解态线形势垒下的g振动能级光解动力学,包括预解离寿命、产物振转布居、平动振动转动能量分配和解离通道分支比.在实验过程中,一束可调谐激光激发超声射流冷却的CS2 分子到1B2 (1Σ+u )电子态,光解产物CS用另一束可调谐激光通过激光诱导荧光(LIF)方法检测.通过拟合光解碎片激发谱的谱峰轮廓,获得了源于不同跃迁初始态的1B2 (1Σ+u )态g振动能级的预解离寿命.通过分析CS的LIF光谱,则获得了不同光解波长下CS碎片的v=0~8振动态布居、v=1、4 ~8振动态的转动布居、能量分配以及两个预解离通道CS(X1Σ+ ) +S(3PJ)和CS(X1Σ+ ) +S(1D2 )的分支比.实验还考察了初始态弯曲振动量子数v2″、振动角动量量子数l对解离动力学的影响.发现v2″的影响不大,而l的影响却是明显的.较大的l(=K)对应于较短的寿命和较小的通道分支比S(3PJ) /S(1D2 ),即大的l(=K)有利于预解离的发生,同时更有利于产生S(1D2 ).  相似文献   

2.
用一束波长为210.27nm的激光将CS2分子激发至预离解态^1B2(^1∑u^+),用另一束激光通过激光诱导荧光(UF)方法检测碎片CS,在250.5~286.5nm获得了CS碎片A^1П←X^1∑^+振转分辨的激发谱,通过对光谱强度的分析,获得了CS碎片v″=0~8的振动布居和v″=1,4~8振动态的转动布居,结果发现,碎片CS的振动布居呈双模结构,分别对应于CS2分子^1B2(^1∑u^+)态的两个解离通道,即CS(X^1∑^+,v″=0~9)+S(^3PJ)和CS(X^1∑^+,v″=0~1)+S(^1B2),由此得到两个解离通道的分支比S(^3P1):S(^1B2)为5.6±1.2。与前人193nm处的研究结果相比,210.27nm激发更有利于S(^3P1)通道的生成。此外,实验还发现CS的转动布居不满足热平衡分布,为两个Boltzmann分布的合成。  相似文献   

3.
弯曲振动对CS2分子1B2(1Σ)态预解离寿命的影响   总被引:1,自引:1,他引:0  
在209.5~216nm,采用光解碎片激发(PHOFEX)谱技术,对CS2分子^1B2(^1∑u^+)态预解离寿命进行了考察.测量在超声射流中进行.信号来自解离碎片CS(A^1Ⅱ,υ’=0←X^1∑^+,υ”=0)Q支带头的激光诱导荧光(LIF).预解离寿命是通过对谱带进行拟合来提取的.拟合中假定基态转动布居为Boltzmann分布,寿命加宽的转动谱线为Lorentz线形.通过拟合共获得^1B2(^1∑u^+)态13个跃迁所对应的预解离寿命,其中6个数据是新得到的.结果表明,基态振动角动量量子数l或激发态转动角量子数K(K=l)对预解离寿命有明显的影响.对于激发态的同一振动能级,较大的K对应于较短的预解离寿命.实验中采用可加热的射流喷嘴,用以提高热带激发的强度,以改善对较大转动角量子数K的影响的考察.  相似文献   

4.
在气束条件下,利用483.2nm的激光(3+1)共振增强多光子电离(REMPI)CS2分子以产生CS2+离子源,用另一束可调谐激光在424-482nm内,通过对CS2^+(x^2∏g)(1+1)双光子共振解离产生的碎片离子发谱的探测,来获取CS2^+的光解离动力学信息,光解离碎片S^+的激光发谱(PHOFEX)可归属为CS2^+(A^2∏u,3/2(v′=0-4,v′=v1_(1/2)v2-)←X^2′∏g,3/2(0,0,0))和(A^2∏u,1/2(v=0-4)←X^2∏g,1/2(0,0,0))跃迁,对CS2^+光解离动力学的研究表明,其产生S^+的通道为:(i)CS2吸收一个光子从基态X^2∏g共振激发至A^-2∏u态,(ii)已布居的A^-2∏u态的振动能级和X^2-∏g态的高振动能级产生耦合,(iii)吸收第二个光子从上述耦合的振动能级进一步激发至B^2∑u^+态,再通过B^-2∑u^+态与^4∑^-态间的自旋-轨道相互作用,经由4∑^-排斥态解离产生S^+_CS。  相似文献   

5.
用一束波长为 2 10 .2 7nm的激光将CS2 分子激发至预离解态1B2 (1Σ+ u) ,用另一束激光通过激光诱导荧光 (LIF)方法检测碎片CS ,在 2 5 0 .5~ 2 86 .5nm获得了CS碎片A1Π←X1Σ+ 振转分辨的激发谱 .通过对光谱强度的分析 ,获得了CS碎片v″ =0~ 8的振动布居和v″=1,4~ 8振动态的转动布居 .结果发现 ,碎片CS的振动布居呈双模结构 ,分别对应于CS2 分子1B2 (1Σ+ u)态的两个解离通道 ,即CS(X1Σ+ ,v″=0~ 9) +S(3 PJ)和CS(X1Σ+ ,v″ =0~ 1)+S(1B2 ) .由此得到两个解离通道的分支比S(3 PJ) :S(1B2 )为 5 .6± 1.2 .与前人 193nm处的研究结果相比 ,2 10 .2 7nm激发更有利于S(3 PJ)通道的生成 .此外 ,实验还发现CS的转动布居不满足热平衡分布 ,为两个Boltzmann分布的合成  相似文献   

6.
在209.5~216nm,采用光解碎片激发(PHOFEX)谱技术,对CS2分子1B2(1Σ+u)态预解离寿命进行了 考察.测量在超声射流中进行.信号来自解离碎片CS(A1Π,v′=0←X1Σ+,v″=0)Q支带头的激光诱导荧光 (LIF).预解离寿命是通过对谱带进行拟合来提取的.拟合中假定基态转动布居为Boltzmann分布,寿命加宽的转 动谱线为Lorentz线形.通过拟合共获得1B2(1Σ+u)态13个跃迁所对应的预解离寿命,其中6个数据是新得到的. 结果表明,基态振动角动量量子数l或激发态转动角量子数K(K=l)对预解离寿命有明显的影响.对于激发态的 同一振动能级,较大的K对应于较短的预解离寿命.实验中采用可加热的射流喷嘴,用以提高热带激发的强度, 以改善对较大转动角量子数K的影响的考察.  相似文献   

7.
用483.2nm的电离激光使CS2分子经由[3+1]REMPI制备出CS2^+(X^∽2Пg,3/2)后,在270~285nm扫描解离激光获得了CS2^+经由B^∽2∑u^+←X^∽2Пg,3/2跃迁的光倒空和光碎片激发谱,由此给出了B^∽2∑u^+电子态的振动频率ν1=613cm^-1和2ν2=707cm^-1。分析表明,正是CS2^+的[1+1]双光子光激发解离过程导致了母体离子CS2^+的光倒空和光解离成碎片离子CS^+和S^+,该过程中光碎片离子的分支比CS^+/S^+大约为3.  相似文献   

8.
用266nm激光解离亚硝基苯(C6H5NO)产生光解碎片NO,并利用单光子激光诱导荧光(LIF)技术(X^2Ⅱv″=0→A^2∑^+v′=0)测得初生态光解产物NO的振转光谱。根据计算所得的模拟光谱对光解碎片NO(X,v^″=0)的转动量子数J″进行了归属,得到了量子数最大到J″=50.5的转动能级的相对布居,这表面光解碎片NO具有较高的转动激发。提出了C6H5NO在266nm下可能的光解机理。  相似文献   

9.
用一束波长为360.55nm的激光,通过N2O分子的(3 1)共振增强多光子电离过程制备纯净的母体离子N2O^ X^2Π3/2,1/2(000).用另一束可调谐激光将N2O^ 离子激发至预解离态A^2Σ^ ,利用飞行时间质谱检测解离碎片NO^ 离子强度随光解光波长的变化,在278—328nm波长范围内获得了光解碎片的激发(PHOFEX)谱.观测到了N2O^ 离子A^2Σ^ ←X^2Π电子跃迁较丰富的振动谱带.通过对PHOFEX光谱的标识,获得了A^2Σ^态较准确和全面的分子光谱常数.  相似文献   

10.
采用从头计算方法从理论上解释了实验中双原子分子S2(B^3∑u^-→X^3∑g^-吸收谱中谱带(18,0)开始出现的弥散现象.计算了包含自旋-轨道耦合(SOC)的B^3∑u^-和排斥的1^5∏u,2^3∑u^+态的电子势能曲线.对于(18,0)谱带开始弥散,给出了与其他文献不同的物理解释.计算结果表明B^3∑u^-与1^5∏u,2^3∑u^+态的SOC作用导致预解离对谱带的弥散起着决定作用,并与实验结果作了比较,符合很好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号