首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported that the silane coating of magnetic nanoparticles (MNPs) of maghemite phase could be used to protect iron oxide cores during plasma heat treatment, and even help to reduce their phase to magnetite with higher magnetization. In this work, an additional layer of an electrically conductive polypyrrole was added on top of the silane-coated MNPs, producing core?Cshell particles with sizes ranging from 150 to 500?nm. A microwave plasma heat treatment was used to convert the amorphous, already-conductive polypyrrole coatings into a more electrically conductive graphitic structure, while simultaneously reducing the iron oxide phase to magnetite. The treatment produced core?Cshell particles with better microwave absorption properties over the frequency of 1?C18?GHz, with a maximum reflection loss (absorption) of these MNPs at ?37?dB at 10.3?GHz for samples containing 70?wt% of plasma-treated core?Cshell nanoparticles embedded in wax. By comparison, the maximum absorption for the same amount of untreated nanoparticles was only ?18?dB at 7.5?GHz. The improved electromagnetic wave absorption properties were due to higher electrical conductivity of the more ordered, graphitic-like polypyrrole shell structures. This relatively simple protocol could thus be used to synthesize highly magnetic and conductive nanocomposites for electromagnetic interference shielding applications, particularly at the high frequency range.  相似文献   

2.
The principal forms of storage-iron in the lamprey,Geotria australis, are haemosiderin in the nephric fold of the larval animal and ferritin in the liver of the adult. Mössbauer spectroscopy of the larval haemosiderin showed that about half of the iron was in the form of ferrihydrite (5Fe2O3.9H2O) with the remainder being in the form of a non-crystalline iron oxyhydroxide, suggesting two modes of biomineralization. The cores of the adult liver ferritin gave spectral parameters indicating the iron to be predominantly in the form of ferrihydrite with about 10% being in a non-crystalline phase.  相似文献   

3.
The assembly of magnetic cores into regular structures may notably influence the properties displayed by a magnetic colloid. Here, key synthesis parameters driving the self‐assembly process capable of organizing colloidal magnetic cores into highly regular and reproducible multi‐core nanoparticles are determined. In addition, a self‐consistent picture that explains the collective magnetic properties exhibited by these complex assemblies is achieved through structural, colloidal, and magnetic means. For this purpose, different strategies to obtain flower‐shaped iron oxide assemblies in the size range 25–100 nm are examined. The routes are based on the partial oxidation of Fe(OH)2, polyol‐mediated synthesis or the reduction of iron acetylacetonate. The nanoparticles are functionalized either with dextran, citric acid, or alternatively embedded in polystyrene and their long‐term stability is assessed. The core size is measured, calculated, and modeled using both structural and magnetic means, while the Debye model and multi‐core extended model are used to study interparticle interactions. This is the first step toward standardized protocols of synthesis and characterization of flower‐shaped nanoparticles.  相似文献   

4.
The magnetization reversal in an array of Fe nanodots etched from the continuous iron film by a focused Ga+ ion beam has been studied. The size of the dots is 600 nm, and the interdot distances are equal to 3.8 μm, 900 nm, and 700 nm. The energy of the dipole-dipole interaction between the nanodots is estimated for arrays with different periods. It is demonstrated that the mechanisms of magnetization reversal are different in arrays of nanodots with strong and negligible dipole-dipole interactions.  相似文献   

5.
Size, shape, and density‐controlled metal nanostructure, Au nanodot lattices fabricated by electron beam lithography, were embedded in thin organic solar cell consisting of PC71BM:PCPDTBT. The effects of their size and density on device performance were examined. Even though dipole res‐onances of Au nanodots were consistent with the absorption range of the active materials, there were no improvements in device performance under any sizes and densities. In addition, under high volume density of Au nanodots to PEDOT:PSS layer, the device performance was deteriorated. These results indicated that not only size and density but also other factors which determine light scattering characteristics greatly affect the device performance of solar cells. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

6.
Laser induced crystallization of ultrathin hydrogenated amorphous Si films or amorphous Si-based multilayered structures were used to get high density Si nanodots. The present technique can get size controllable Si nanodots embedded in various dielectric materials with uniform distribution which was revealed by cross-section transmission electron microscopy. Room temperature photoluminescence and electroluminescence were achieved with the emission wavelength in a visible light region both from a-SiN/Si nanodots/a-SiN sandwiched and Si nanodots/SiO2 multilayered structures. The luminescence was associated with the radiative recombination of generated electron-hole pairs in Si nanodots or the luminescent surface states. The electroluminescence intensity is increased with increasing the injection current implying the bipolar carrier injection plays an important role in enhancing the luminescence efficiency. The formed Si nanodots by the present approach can be applied for many kinds of devices such as high efficient light emitting diodes and solar cells.  相似文献   

7.
Growth of Ru- and RuO2-composite (ROC) nanodots on atomic-layer-deposited Al2O3 film has been studied for the first time using ion-beam sputtering followed by post-deposition annealing (PDA). X-ray photoelectron spectroscopy analyses reveal that RuO2 and Ru co-exist before annealing, and around 10% RuO2 is reduced to metallic Ru after PDA at 900 °C for 15 s. Scanning electron microscopy measurements show that well-defined spherical ROC nanodots are not formed till the PDA temperature is raised to 900 °C. The mean diameter of the nanodots enlarges with increasing PDA temperature whereas the nanodot density decreases, which is attributed to coalescence process between adjacent nanodots. It is further illustrated that the resulting nanodot size and density are weakly dependent on the annealing time, but are markedly influenced by the decomposition of RuO2. In this article, the ROC nanodots with a high density of 1.6 × 1011 cm−2, a mean diameter of 20 nm with a standard deviation of 3.0 nm have been achieved for the PDA at 900 °C for 15 s, which is promising for flash memory application.  相似文献   

8.
The fabrications of size-tunable periodic arrays of nickel metal and silicide nanodots on (0 0 1)Si substrates using polystyrene (PS) nanosphere lithography (NSL) and heat treatments have been investigated. The growth of epitaxial NiSi2 was found to be more favorable for the Ni metal nanodot arrays. The effect becomes more pronounced with a decrease in the size of the Ni nanodots. The sizes of the epitaxial NiSi2 nanodots were tuned from 38 to 110 nm by varying the diameter of the PS spheres and heat treatment conditions. These epitaxial NiSi2 nanodots formed on (0 0 1)Si were found to be heavily faceted and the faceted structures were more prone to form at higher temperatures. Based on TEM, HRTEM and SAED analysis, the faceted NiSi2 nanodots were identified to be inverse pyramids in shape. Compared with the NiSi2 nanodot arrays formed using single-layer PS sphere masks, the epitaxial NiSi2 nanodot arrays formed from the double-layer PS sphere templates exhibit larger interparticle spacings and smaller particle sizes. Since the nanoparticle sizes, shapes and interparticle spacings can be adjusted by tuning the diameter of the PS spheres, stacking conditions, and heat treatment conditions, the PS NSL technique promises to be an effective patterning method for growth of other nanostructures.  相似文献   

9.
Shulga  Yu. M.  Martynenko  V. M.  Berestenko  V. I.  Domashnev  I. A.  Kurkin  E. N.  Torbov  V. I. 《Technical Physics》2011,56(10):1531-1534
Nonpyrophoric tungsten powders with an average particle size of about 30 nm were obtained by pyrolysis of tungsten hexacarbonyl in a flow of microwave discharge nitrogen plasma. It is found that these powders are stable in air up to 300°C. The reason for such stability is that the structure of powder particles is of the core-double shell type, in which the metal core is covered with an oxide film approximately 1 nm in thickness, coated in turn with roentgenoamorphous layer consisting of carbon, oxygen, and nitrogen atoms. It is also established that the powders under investigation mainly release carbon oxides (CO and CO2) and water into the gas phase upon heating in vacuum. Among the molecules present in the gas phase in small concentrations, nitrogen monoxide (NO) and formaldehyde (H2CO) are worth mentioning apart from C1–C3 hydrocarbons.  相似文献   

10.
Uniformly distributed PbTiO3 nanodots were successfully prepared by phase separation approach. A precursor sol film was first spin-coated on Si wafer and then spontaneously separated into two distinct phases owing to the Marangoni instability. PT nanodots with tailorable size and density were obtained after further heat treatment. X-ray diffraction analysis indicated that these nanodots showed a perovskite structure. An excellent room temperature field emission property of PbTiO3 nanodots was observed: the minimum turn-on voltage was about 5.3 V/μm; while the emission current density reached about 270 μA cm−2 at an applied field of about 9.25 V/μm.  相似文献   

11.
In order to achieve an accurate understanding of the crystal structure of 6-line ferrihydrite (6LFh) and ferritin molecule cores within a human liver biopsy using transmission electron microscopy (TEM), electron beam damage should be considered. For the case of 6LFh, the electron energy loss near-edge structure (ELNES) of core ionisation edges in the electron energy loss spectrum (EELS) combined with multiple linear least-square (MLLS) fitting of reference spectra together with analysis of selected area electron diffraction (SAED) patterns suggests that the iron in 6LFh is solely octahedrally coordinated Fe3+. With increasing electron dose, an increasing percentage of this octahedrally coordinated Fe3+ migrates to tetrahedral sites. When the dose exceeds 3 x 10(8) electrons/nm2, Fe2+ is found to be present in the material. This method also indicates that the iron in ferritin molecule cores within a human liver biopsy is the same as in 6LFh, entirely Fe3+ in octahedral coordination with oxygen. Again the percentage of octahedrally coordinated Fe3+ decreases as the accumulated electron dose increases and Fe2+ is produced in the liver biopsies when the electron dose exceeds 10(6)electrons/nm2.  相似文献   

12.
X-ray diffraction and 57Fe Mössbauer spectroscopy are used to characterize the influence of borate on two-line ferrihydrite's structure and develop likely models for its attachment. Particle sizes were in the 2–4 nm range, and as borate sorption increased, the ferrihydrite particle size decreased. The d-spacings of two-line ferrihydrite increased with increased borate adsorption. Isomer shift and quadrupole splitting exhibit slight increasing trends as well. Also, the phase transformation temperature of ferrihydrite to hematite is significantly raised due to borate coating of the surface. We suggest borate is sorbed onto the surface by attachment to the oxygen corners of the iron octahedra that are on the surface of the nanoparticles, placing boron in a tetrahedral molecular geometry.  相似文献   

13.
Near‐infrared emissive (NIR) porphyrin‐implanted carbon nanodots (PCNDs or MPCNDs) are prepared by selectively carbonization of free base or metal complexes [M = Zn(II) or Mn(III)] of tetra‐(meso‐aminophenyl)porphyrin in the presence of citric acid. The as‐prepared nanodots exhibit spontaneously NIR emission, small size, good aqueous dispersibility, and favorable biocompatibility characteristic of both porphyrins and pristine carbon nanodots. The subcellular localization experiment of nanodots indicates a lysosome‐targeting feature. And the in vitro photodynamic therapy (PDT) results on HeLa cells indicate the nanodots alone have no adverse effect on tumor cells, but display remarkable photodynamic efficacy upon irradiation. Moreover, MnPCNDs containing paramagnetic Mn(III) ions, which possesses good biocompatibility, NIR luminescence, and magnetic resonance imaging and efficient singlet oxygen production, are further studied in magnetic resonance imaging‐guided photodynamic therapy in vivo.  相似文献   

14.
Apart from unique properties of layered transition‐metal dichalcogenide nanosheets like MoS2, quantum dots (QDs) from these layered materials promise novel science and applications due to their quantum confinement effect. However, the reported fabrication techniques for such QDs all involve the use of liquid organic solvents and the final material extraction from such liquid dispersions. Here a novel and convenient dry method for the synthesis of MoS2 quantum dots interspersed on few‐layer MoS2 using soft hydrogen plasma treatment followed by post‐annealing is demonstrated. The size of MoS2 nanodots can be well controlled by adjusting the working pressure of hydrogen plasma and post‐thermal annealing. This method relies on the cumulative hydrogen ion bombardment effect which can destroy the hexagonal structure of the top MoS2 layer and disintegrate the top layer into MoS2 nanodots and even QDs. Post‐thermal annealing can further reduce the size. Such MoS2 quantum dots interspersed on few‐layer MoS2 exhibit two new photoluminescence peaks at around 575 nm because of the quantum confinement effect. This dry method is versatile, scalable, and compatible with the semiconductor manufacturing processes, and can be extended to other layered materials for applications in hydrogen evolution reaction, catalysis, and energy devices.  相似文献   

15.
I.R. Laskar  M. Hada  J. Li 《Surface science》2009,603(4):625-631
The micellar shape of liquid crystalline diblock copolymers, PEOm-b-PMA(Az)n, consisting of high surface energy components was controlled by tuning surface interactions. On a fluorinated surface, the diblock copolymers formed ordered arrays of spherical micelles consisting of PEO cores surrounded by PMA(Az) coronas. Gold ions could be doped into the PEO cores by immersion in a solution of the gold ion. The Au3+-doped micelles were subsequently etched and reduced by VUV radiation to form hexagonally ordered gold nanodots.  相似文献   

16.
A rich variety of magnetic phenomena is observed in Mössbauer studies of ferritin. Depending on the amount of iron in the horse spleen ferritin core, a paramagnetic relaxation spectrum, or quadrupole split doublet or a magnetically split sextet showing superpara-magnetism, are obtained a 4.1 K. Mössbauer studies of the recently prepared iron loaded concanavalin A yield hyperfine parameters identical to those found previously in mammalian ferritin, yet show the existence of larger iron aggregates. Due to the larger particle size it is possible to follow the magnetic hyperfine field and to obtain the magnetic ordering temperature as 240 K. This is exactly the Neél temperature of ferrihydrite, thus establishing that this is indeed the iron compound in the ferritin core.  相似文献   

17.
Mössbauer spectroscopy and X-ray diffraction were used to establish the composition of the rust formed on pure iron and weathering steel after exposure to several wet-dry cycles in an SO2-polluted atmosphere. α-FeOOH poorly crystallized andquasi amorphous ferrihydrite are identified as the main corrosion products. The rust has different particle size for iron and weathering steel samples.  相似文献   

18.
Ab initio calculations are performed about the dependent characteristics of theconductive path on Ti/Cu/Zr interstitials and oxygen vacancies in rutile-type titaniumdioxide. It is found that eight oxygen vacancies in two columns around five Ti-ions couldlead to a conductive path. Besides, the conductive path will occur when additional fouroxygen vacancies exist at the third column in ?110 ? direction rather than on (110) facet. Oxygen vacancies at thethird and fourth columns on (110) facet are considered and lead to a conductive path.Furthermore, one or three metal interstitials, such as Ti, Cu or Zr, are doped in titaniumdioxide with three columns of oxygen vacancies on (110) facet, respectively. Theconductive path is only found in the structure above with three Ti interstitials. Weconclude that more Ti interstitials doping in reduced TiO2 benefit the formation of stableconductive path in resistive random access memory.  相似文献   

19.
Re-examination of Dronino iron meteorite and products of its weathering in the internal and external surface layers was carried out using Mössbauer spectroscopy with a high velocity resolution. New results showed the presence of α-Fe(Ni, Co), α 2-Fe(Ni, Co) and γ-Fe(Ni, Co) phases with variations in Ni concentration in Dronino metallic iron alloy. The surface weathering products were supposed as magnetite and/or maghemite, goethite with different particles size and probably ferrihydrite in the internal layer and goethite with different particles size and probably ferrihydrite in the external layer.  相似文献   

20.
A core–shell composite has been synthesized through in situ polymerization in emulsion with an average of 205 nm of diameter. Each composite consists of a graphene oxide (GO) core and a poly(methyl methacrylate/butyl acrylate) shell. The latex is homogeneous without any aggregation after stability testing in normal temperature for 100 d and can be applied as an ideal conductive adhesive whose glass transition temperature (T g) is under ?30 °C and lucid conductive film whose T g is above 17 °C. There exists half core–shell structure in the composite with part of GO exposed which contributes to the electrical conductivity of film formed by composite. The electrical conductivity of the composite is sensitive to humidity, increasing from 0.233 to 0.357 S m?1, while the related humidity ranges from 0% to 60%. The flexible aliphatic shell established by polyacrylate chains with nanolevel of interspaces makes it easy for hydrone to move in and interact with the oxygen groups on the chains, and then the interaction enhances the difficulty for hydrone to move out, on account of which film formed by core–shell composite can hold hydrone and exhibit advanced electrical conductivity in high humidity atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号