首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quantum spin Hall (QSH) state of matter is usually considered to be protected by time-reversal (TR) symmetry. We investigate the fate of the QSH effect in the presence of the Rashba spin-orbit coupling and an exchange field, which break both inversion and TR symmetries. It is found that the QSH state characterized by nonzero spin Chern numbers C(±) = ±1 persists when the TR symmetry is broken. A topological phase transition from the TR-symmetry-broken QSH phase to a quantum anomalous Hall phase occurs at a critical exchange field, where the bulk band gap just closes. It is also shown that the transition from the TR-symmetry-broken QSH phase to an ordinary insulator state cannot happen without closing the band gap.  相似文献   

2.
耿虎  计青山  张存喜  王瑞 《物理学报》2017,66(12):127303-127303
<正>研究了缀饰格子中的量子自旋霍尔效应,模型中同时考虑了Rashba自旋轨道耦合和交换场的作用.缀饰格子具有简立方对称性,以零能平带和单狄拉克锥结构为主要特点.在缀饰格子中,不论是实现量子自旋霍尔效应还是量子反常霍尔效应,都需要一个不为零的内禀自旋轨道耦合作用来打开一个完全的体能隙,这与石墨烯等六角格子模型有着很大的不同.在交换场破坏了时间反演对称性的情况下,以自旋陈数为标志的量子自旋霍尔效应仍然能够存在,边缘态和极化率的相关结果也证明了这一结论.结果表明自旋陈数比z2拓扑数在表征量子自旋霍尔效应方面有着更广泛的适用范围,相应的结论为利用磁场控制量子自旋霍尔效应提出了一个理论模型和依据.  相似文献   

3.
The quantum spin Hall (QSH) effect and the quantum anomalous Hall (QAH) effect in Lieblattice are investigated in the presence of both Rashba spin-orbit coupling (SOC) anduniform exchange field. The Lieb lattice has a simple cubic symmetry, which ischaracterized by the single Dirac-cone per Brillouin zone and the middle flat band in theband structure. The intrinsic SOC is essentially needed to open the full energy gap in thebulk. The QSH effect could survive even in the presence of the exchange field. In terms ofthe first Chern number and the spin Chern number, we study the topological nature and thetopological phase transition from the time-reversal symmetry broken QSH effect to the QAHeffect. For Lieb lattice ribbons, the energy spectrum and the wave-function distributionsare obtained numerically, where the helical edge states and the chiral edge states revealthe non-trivial topological QSH and QAH properties, respectively.  相似文献   

4.
郭怀明  冯世半 《中国物理 B》2012,21(7):77303-077303
We study a toy square-lattice model under a uniform magnetic field. Using the Landauer-Bttiker formula, we calculate the transport properties of the system on a two-terminal, a four-terminal and a six-terminal device. We find that the quantum spin Hall (QSH) effect appears in energy ranges where the spin-up and spin-down subsystems have different filling factors. We also study the robustness of the resulting QSH effect and find that it is robust when the Fermi levels of both spin subsystems are far away from the energy plateaus but is fragile when the Fermi level of any spin subsystem is near the energy plateaus. These results provide an example of the QSH effect with a physical origin other than time-reversal (TR) preserving spin-orbit coupling (SOC).  相似文献   

5.
The quantum spin Hall (QSH) state is a topologically nontrivial state of quantum matter which preserves time-reversal symmetry; it has an energy gap in the bulk, but topologically robust gapless states at the edge. Recently, this novel effect has been predicted and observed in HgTe quantum wells and in this Letter we predict a similar effect arising in Type-II semiconductor quantum wells made from InAs/GaSb/AlSb. The quantum well exhibits an "inverted" phase similar to HgTe/CdTe quantum wells, which is a QSH state when the Fermi level lies inside the gap. Due to the asymmetric structure of this quantum well, the effects of inversion symmetry breaking are essential. Remarkably, the topological quantum phase transition between the conventional insulating state and the quantum spin Hall state can be continuously tuned by the gate voltage, enabling quantitative investigation of this novel phase transition.  相似文献   

6.
A Kramers pair of helical edge states in quantum spin Hall effect (QSHE) is robust against normal dephasing but not robust to spin dephasing. In our work, we provide an effective spin dephasing mechanism in the puddles of two-dimensional (2D) QSHE, which is simulated as quantum dots modeled by 2D massive Dirac Hamiltonian. We demonstrate that the spin dephasing effect can originate from the combination of the Rashba spin-orbit coupling and electron-phonon interaction, which gives rise to inelastic backscattering in edge states within the topological insulator quantum dots, although the time-reversal symmetry is preserved throughout. Finally, we discuss the tunneling between extended helical edge states and local edge states in the QSH quantum dots, which leads to backscattering in the extended edge states. These results can explain the more robust edge transport in InAs/GaSb QSH systems.  相似文献   

7.
In this paper, we find that topological insulators with time-reversal symmetryand inversion symmetry featuring two-dimensional quantum spin Hall (QSH) state can be divided into 16 classes, which are characterized by four Z2topological variables ζk=0,1 at four points with high symmetry in the Brillouin zone. We obtain the corresponding edge states for each one of these sixteen classes of QSHs. In addition, it is predicted that massless fermionic excitations appear at the quantum phase transition between different QSH states. In the end, we also briefly discuss the three-dimensional case.  相似文献   

8.
陈锐  周斌 《中国物理 B》2016,25(6):67204-067204
For a two-dimensional Lieb lattice,that is,a line-centered square lattice,the inclusion of the intrinsic spin–orbit(ISO)coupling opens a topologically nontrivial gap,and gives rise to the quantum spin Hall(QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap.Generally,due to the finite size effect in QSH systems,the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum.In this paper,we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions,i.e.,the straight,bearded and asymmetry edges.The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice.For a strip Lieb lattice with two straight edges,the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum.Moreover,it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice,and no gap is opened in the edge band.It is concluded that the finite size effect of QSH states is absent in the case with the straight edges.However,in the other two cases with the bearded and asymmetry edges,the energy gap induced by the finite size effect is still opened with decreasing the width of the strip.It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms.  相似文献   

9.
In this work, we study the effects of disorder on topological metals that support a pair of helical edge modes deeply embedded inside the gapless bulk states. Strikingly, we predict that a quantum spin Hall(QSH) phase can be obtained from such topological metals without opening a global band gap. To be specific, disorder can lead to a pair of robust helical edge states which is protected by an emergent Z_2 topological invariant, giving rise to a quantized conductance plateau in transport measurements. These results are instructive for solving puzzles in various transport experiments on QSH materials that are intrinsically metallic. This work also will inspire experimental realization of the QSH effect in disordered topological metals.  相似文献   

10.
The quantum spin Hall (QSH) phase is a time reversal invariant electronic state with a bulk electronic band gap that supports the transport of charge and spin in gapless edge states. We show that this phase is associated with a novel Z2 topological invariant, which distinguishes it from an ordinary insulator. The Z2 classification, which is defined for time reversal invariant Hamiltonians, is analogous to the Chern number classification of the quantum Hall effect. We establish the Z2 order of the QSH phase in the two band model of graphene and propose a generalization of the formalism applicable to multiband and interacting systems.  相似文献   

11.
We study three-dimensional generalizations of the quantum spin Hall (QSH) effect. Unlike two dimensions, where a single Z2 topological invariant governs the effect, in three dimensions there are 4 invariants distinguishing 16 phases with two general classes: weak (WTI) and strong (STI) topological insulators. The WTI are like layered 2D QSH states, but are destroyed by disorder. The STI are robust and lead to novel "topological metal" surface states. We introduce a tight binding model which realizes the WTI and STI phases, and we discuss its relevance to real materials, including bismuth.  相似文献   

12.
13.
The quasi-single-helicity (QSH) state of a reversed-field pinch (RFP) plasma is a regime in which the RFP configuration can be sustained by a dynamo produced mainly by a single tearing mode and in which a helical structure with well-defined magnetic flux surfaces arises. In this Letter, we show that spontaneous transitions to the QSH regime enhance the particle confinement. This improvement is originated by the simultaneous and cooperative action of the increase of the magnetic island and the reduction of the magnetic stochasticity.  相似文献   

14.
Fluorescence quantum yields of seven rhodamine dyes were measured relative to quinine sulfate dihydrate (QSH) in 1.0 N H2SO4. The values obtained were rhodamine 6G (0.95), B (0.65), 3B (0.45), 19 (0.95), 101 (0.96), 110 (0.92), 123 (0.90) at 25.0°C. Effects of temperature on the quantum yields of rhodamine B and QSH show a large temperature coefficient for rhodamine B and a significant one for QSH. Dye concentration was found to be critical in reporting observed fluorescence wavelength maxima.  相似文献   

15.
We analyze electron transport in multiprobe quantum spin Hall (QSH) bars using the Büttiker formalism and draw parallels with their quantum Hall (QH) counterparts. We find that in a QSH bar the measured resistance changes upon introducing side voltage probes, in contrast to the QH case. We also study four- and six-terminal geometries and derive the expressions for the resistances. For these our analysis is generalized from the single-channel to the multi-channel case and to the inclusion of backscattering originating from a constriction placed within the bar.  相似文献   

16.
The first experimental study of the MHD dynamo in a quasi-single-helicity (QSH) reversed-field pinch toroidal plasma is presented. In QSH plasmas, a dominant wave number appears in the velocity fluctuation spectrum. This velocity component extends throughout the plasma volume and couples with magnetic fluctuations to produce a significant MHD dynamo electric field. The narrowing of the velocity fluctuation spectrum and the single-mode character of the dynamo are features predicted by theory and computation, but only now are observed in experiment.  相似文献   

17.
The resilience to chaotic perturbations of one-parameter one-degree-of-freedom Hamiltonian dynamics is shown to increase when its corresponding separatrix vanishes due to a saddle-node bifurcation. This is first highlighted for the magnetic chaos related to quasisingle helicity (QSH) states of the reversed field pinch. It provides a rationale for the confinement improvement of helical structures experimentally found for QSH plasmas; such a feature would not be expected from the classical resonance overlap picture as the separatrix disappearance occurs when the amplitude of the dominant mode increases.  相似文献   

18.
陈英明  王秉中 《中国物理 B》2012,21(2):26401-026401
As an example of our new approach to complex near-field (NF) scattering of electromagnetic waves, the time-reversal (TR) transmission process on an NF current-element array is mapped to the statistical process on a kinetic Ising transmission chain. Equilibrium statistical mechanics and non-equilibrium Monte Carlo (MC) dynamics help us to find signal jamming, aging, annihilating, creating, and TR symmetry breaking on the chain with inevitable background noises; and these results are general in NF systems where complex electromagnetic scattering arises.  相似文献   

19.
The anisotropic feature of most crystals, involves a direction dependent wave velocity for each of the possible modes. Paratellurite (Tellurium dioxide) is extraordinary because, for one of the propagation modes, i.e. the quasi shear horizontal (QSH) mode, the anisotropy is exceptional. This results, on the one hand in a very strong directional dependent sound velocity and on the other hand, in a low wave velocity in certain directions, resulting in a high figure of merit for the acousto-optical interaction. In the case of inhomogeneous waves, the slowness surfaces change their shape and magnitude, for all crystals. However, for paratellurite, this effect is again extraordinary. As soon as a relatively small inhomogeneity is considered, the sound velocity for the QSH mode becomes really exceptionally anisotropic, resulting in a slowness surface that is almost spherical, covered by pins. The velocity corresponding to those 'pins', is much lower than in the case of homogeneous plane waves, which is very promising for the future development of acousto-optic cells involving an even higher figure of merit.  相似文献   

20.
刘娜  胡边  魏鸿鹏  刘红 《物理学报》2018,67(11):117301-117301
应用含自洽格点在位库仑作用的Kane-Mele模型,研究锯齿型石墨烯纳米窄带平面内横向电场对边界带能带结构和量子自旋霍尔(QSH)体系的影响.研究结果显示,当电场强度较弱时,外加电场的方向可以调控自旋向下的两个边界带一起朝不同方向移动,导致波矢q=0.5处自旋向下的两个纯边界态的能量简并劈裂方向可由电场调控;当电场强度进一步增强到超过0.69 V/nm,自旋向下的两个边界带出现较大带隙,能带反转,而自旋向上的电子结构无能隙,系统呈现半金属性,同时QSH体系不再是B类.特别当电场强度为1.17 V/nm时,在自旋向下能带的能隙中,q=0.5处存在自旋向上的纯边界态,意味着在8格点边界处可以产生自旋向上的纯边界电流.当电场强度持续增加时,QSH系统从B类到C类经历3个阶段的变化.当电场强度超过1.42 V/nm后,自旋向上的两个边界带也出现能带反转,分别成为导带和价带,系统成为C类的普通量子霍尔体系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号