首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
The effective Lagrangian of a finite volume system should, in principle, depend on the system size. In the framework of the Nambu-Jona-Lasinio(NJL) model, by considering the influence of quark feedback on the effective coupling, we obtain a modified NJL model so that its Lagrangian depends on the volume. Based on the modified NJL model, we study the influence of finite volume on the chiral phase transition at finite temperature, and find that the pseudo-critical temperature of crossover is much lower than that obtained in the normal NJL model. This clearly shows that the volume dependent effective Lagrangian plays an important role in the chiral phase transitions at finite temperature.  相似文献   

2.
We present results for the chiral and deconfinement transition of two flavor QCD at finite temperature and chemical potential. To this end we study the quark condensate and its dual, the dressed Polyakov loop, with functional methods using a set of Dyson-Schwinger equations. The quark propagator is determined self-consistently within a truncation scheme including temperature and in-medium effects of the gluon propagator. For the chiral transition we find a crossover turning into a first order transition at a critical endpoint at large quark chemical potential, μEP/TEP≈3. For the deconfinement transition we find a pseudo-critical temperature above the chiral transition in the crossover region but coinciding transition temperatures close to the critical endpoint.  相似文献   

3.
The chiral phase transition in QCD at finite chemical potential and temperature can be characterized for small chemical potential by its curvature and the transition temperature. The curvature is accessible to QCD lattice simulations, which are always performed at finite pion masses and in finite simulation volumes. We investigate the effect of a finite volume on the curvature of the chiral phase transition line. We use functional renormalization group methods with a two flavor quark-meson model to obtain the effective action in a finite volume, including both quark and meson fluctuation effects. Depending on the chosen boundary conditions and the pion mass, we find pronounced finite-volume effects. For periodic quark boundary conditions in spatial directions, we observe a decrease in the curvature in intermediate volume sizes, which we interpret in terms of finite-volume quark effects. Our results have implications for the phase structure of QCD in a finite volume, where the location of a possible critical endpoint might be shifted compared to the infinite-volume case.  相似文献   

4.
Within the framework of the Dyson-Schwinger equations and by means of Multiple Reflection Expansion,we study the effect of finite volume on the chiral phase transition in a sphere, and discuss in particular its influence on the possible location of the critical end point(CEP). According to our calculations, when we take a sphere instead of a cube, the influence of finite volume on phase transition is not as significant as previously calculated. For instance,as the radius of the spherical volume decreases from infinite to 2 fm, the critical temperature T c, at zero chemical potential and finite temperature, drops only slightly. At finite chemical potential and finite temperature, the location of CEP shifts towards smaller temperature and higher chemical potential, but the amplitude of the variation does not exceed 20%. As a result, we find that not only the size of the volume but also its shape have a considerable impact on the phase transition.  相似文献   

5.
Spontaneous and explicit chiral symmetry breaking is analyzed in Coulomb gauge QCD at finite temperatures, using an instantaneous approximation for the quark interaction and incorporating confinement through a running coupling constant. The thermodynamics of the quarks is treated approximatively by assuming that the momentum-dependent constituent quark mass sets the scale for thermodynamic fluctuations of colour singlet excitations. We investigate the class of a temperature independent and a temperature dependent interaction between quarks. In the chiral limit both temperature independent and a smooth temperature dependent interaction yields a second order chiral phase transition with critical exponents close to the values for a BCS super-conductor. For explicit chiral symmetry breaking we find a nearly constant pion mass below the transition temperature, but a strongly overdamped mode above. For a first order deconfining transition in the gluonic sector also the quark sector shows a first order chiral phase transition. The relevance of our results for relativistic heavy ion collisions is briefly discussed.  相似文献   

6.
The nucleon axial charge is calculated as a function of the pion mass in full QCD. Using domain wall valence quarks and improved staggered sea quarks, we present the first calculation with pion masses as light as 354 MeV and volumes as large as (3.5 fm)3. We show that finite volume effects are small for our volumes and that a constrained fit based on finite volume chiral perturbation theory agrees with experiment within 7% statistical errors.  相似文献   

7.
We study the scaling behavior of the two-flavor chiral phase transition using an effective quark–meson model. We investigate the transition between infinite-volume and finite-volume scaling behavior when the system is placed in a finite box. We can estimate effects that the finite volume and the explicit symmetry breaking by the current quark masses have on the scaling behavior which is observed in full QCD lattice simulations. The model allows us to explore large quark masses as well as the chiral limit in a wide range of volumes, and extract information about the scaling regimes. In particular, we find large scaling deviations for physical pion masses and significant finite-volume effects for pion masses that are used in current lattice simulations.  相似文献   

8.
9.
We present results for the nucleon axial charge g{A} at a fixed lattice spacing of 1/a=1.73(3) GeV using 2+1 flavors of domain wall fermions on size 16;{3} x 32 and 24;{3} x 64 lattices (L=1.8 and 2.7 fm) with length 16 in the fifth dimension. The length of the Monte Carlo trajectory at the lightest m_{pi} is 7360 units, including 900 for thermalization. We find finite volume effects are larger than the pion mass dependence at m{pi}=330 MeV. We also find a scaling with the single variable m{pi}L which can also be seen in previous two-flavor domain wall and Wilson fermion calculations. Using this scaling to eliminate the finite-volume effect, we obtain g{A}=1.20(6)(4) at the physical pion mass, m_{pi}=135 MeV, where the first and second errors are statistical and systematic. The observed finite-volume scaling also appears in similar quenched simulations, but disappear when V>or=(2.4 fm);{3}. We argue this is a dynamical quark effect.  相似文献   

10.
With the Nambu-Jona-Lasinio (NJL) model we calculate the properties of pion and σ-meson at finite temperature and finite magnetic field. The obtained temperature and magnetic field strength dependence of the constituent quark mass M, the pion and σ-meson masses and the neutral pion decay constant indicates that, in the simple four fermion interaction model, there exists the magnetic catalysis effect. It also shows that the Gell-Mann-Oakes-Renner relation is violated obviously with the increasing of the temperature, and the effect of the magnetic field becomes pronounced only around the critical temperature. The deviation of the critical temperatures obtained with different criteria indicates that the chiral phase transition driven by the temperature in the magnetic field strength region we have considered is in fact a crossover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号