首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a new technique using energy filtered TEM (EFTEM) for inelastic electron scattering contrast imaging of Germanium distribution in Si-SiGe nanostructures. Comparing electron energy loss spectra (EELS) obtained in both SiGe and Si single crystals, we found a spectrum area strongly sensitive to the presence of Ge in the range [50-100 eV]. In this energy loss window, EELS spectrum shows a smooth steeply shaped background strongly depending on Ge concentration. Germanium mapping inside SiGe can thus be performed through imaging of the EELS background slope variation, obtained by processing the ratio of two energy filtered TEM images, respectively, acquired at 90 and 60 eV. This technique gives contrasted images strongly similar to those obtained using STEM Z-contrast, but presenting some advantages: elastic interaction (diffraction) is eliminated, and contrast is insensitive to polycrystalline grains orientation or specimen thickness. Moreover, since the extracted signal is a spectral signature (inelastic energy loss) we demonstrate that it can be used for observation and quantification of Ge concentration depth profile of SiGe buried layers.  相似文献   

2.
In this work, we demonstrate a fast approach to grow SiO2 nanowires by rapid thermal annealing (RTA). The material characteristics of SiO2 nanowires are investigated by field emission scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field (HAADF) imaging, electron energy loss spectroscopy (EELS), and energy-filtered TEM (EFTEM). The HAADF images show that the wire tip is predominantly composed of Pt with brighter contrast, while the elemental mappings in EFTEM and EELS spectra reveal that the wire consists of Si and O elements. The SiO2 nanowires are amorphous with featureless contrast in HRTEM images after RTA at 900°C. Furthermore, the nanowire length and diameter are found to be dependent on the initial Pt film thickness. It is suggested that a high SiO2 growth rate of >1 μm/min can be achieved by RTA, showing a promising way to enable large-area fabrication of nanowires.  相似文献   

3.
This paper systematically demonstrates that energy-filtered transmission electron microscope (EFTEM) images of a planar interface between two single crystals have increased compositional contrast and decreased residual diffraction contrast when the sample is oriented so that the electron beam is parallel to the interface, but not directly on a zone axis. This off-axis orientation reduces diffraction contrast in the unfiltered (and zero-loss) image, which in turn, reduces residual diffraction contrast in single energy-filtered TEM (EFTEM) images, thickness maps, jump-ratio images, and elemental maps. Most importantly, this procedure produces EFTEM images that are more directly interpretable and, in most cases, possess superior spatial resolution compared to EFTEM images acquired directly on a zone axis.  相似文献   

4.
This article is a survey of hardware and software advances that promise to increase the power and sensitivity of electron energy-loss spectroscopy (EELS) and energy-filtered imaging (EFTEM) in a transmission electron microscope. Recent developments include electron-gun monochromators, lens-aberration correctors, and software for spectral sharpening, spectral processing and interpretation of fine structure. Future improvements could include the deployment of new electron sources. The expected enhancements in energy and spatial resolution are compared with fundamental limitations that arise from the natural widths of spectral peaks, the delocalization of inelastic scattering and the problem of electron-irradiation damage.  相似文献   

5.
We demonstrate atomic-column imaging by scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). The silicon atomic-columns of a β-Si3N4 (0 0 1) specimen are clearly resolved. The atomic-site dependence and the energy-loss dependence of the spatial resolution are elucidated on the basis of the experimental results and multislice calculations. We describe two decisive factors for realizing atomic-column imaging in terms of localization in elastic and inelastic scattering. One is the channeling of the incident probe due to dynamical diffraction, which has atomic-site dependence. The other is the localization in inelastic scattering; in addition to the energy-loss dependence of delocalization, we point out its dependence on the offset energy from the ionization energy, i.e., an additional localization factor concerning the Bethe surface. The present atomic-column observation of the Si-L core-loss image indicates that the local approximation, which can be interpreted intuitively, is achievable under appropriate experimental conditions, such as high-energy-loss, a small convergence angle and a large collection angle (e.g., 400 eV, 15 and 30 mrad, respectively).  相似文献   

6.
采用基于密度泛函理论的平面波超软赝势方法,在局域密度近似(LDA)下研究了Si纳米层厚度和O空位缺陷对Si/SiO2界面电子结构及光学性质的影响.电子结构计算结果表明:在0.815~2.580nm的Si层厚度范围内,Si/SiO2界面结构的能隙随着厚度减小而逐渐增大,表现出明显的量子尺寸效应,这与实验以及其他理论计算结果一致;三种不同的O空位缺陷的存在均使得Si/SiO2界面能隙中出现了缺陷态,费米能级向高能量方向移动,且带隙有微弱增加.光学性质计算结果表明:随着Si纳米层厚度的减小,Si/SiO2界面吸收系数产生了蓝移;O空位缺陷引入后,界面光学性质的变化主要集中在低能区,即低能区的吸收系数和光电导率显著增加.可见,改变厚度和引入缺陷能够有效地调控Si/SiO2界面体系的电子和光学性质,上述研究结果为Si/SiO2界面材料的设计与应用提供了一定的理论依据.  相似文献   

7.
采用基于密度泛函理论的平面波超软赝势方法,在局域密度近似( LDA)下研究了Si纳米层厚度和O空位缺陷对Si/SiO2界面电子结构及光学性质的影响.电子结构计算结果表明:在0.815~2.580nm的Si层厚度范围内, Si/SiO2界面结构的能隙随着厚度减小而逐渐增大,表现出明显的量子尺寸效应,这与实验以及其他理论计算结果一致;三种不同的O空位缺陷的存在均使得Si/SiO2界面能隙中出现了缺陷态,费米能级向高能量方向移动,且带隙有微弱增加.光学性质计算结果表明:随着Si纳米层厚度的减小, Si/SiO2界面吸收系数产生了蓝移; O空位缺陷引入后,界面光学性质的变化主要集中在低能区,即低能区的吸收系数和光电导率显著增加.可见,改变厚度和引入缺陷能够有效地调控Si/SiO2界面体系的电子和光学性质,上述研究结果为Si/SiO2界面材料的设计与应用提供了一定的理论依据.  相似文献   

8.
Germanosilicate layers were grown on Si substrates by plasma enhanced chemical vapor deposition (PECVD) and annealed at different temperatures ranging from 700–1010 °C for durations of 5 to 60 min. Transmission electron microscopy (TEM) was used to investigate Ge nanocrystal formation in SiO2:Ge films. High-resolution cross section TEM images, electron energy-loss spectroscopy and energy dispersive X-ray analysis (EDX) data indicate that Ge nanocrystals are present in the amorphous silicon dioxide films. These nanocrystals are formed in two spatially separated layers with average sizes of 15 and 50 nm, respectively. EDX analysis indicates that Ge also diffuses into the Si substrate. PACS 68.73.Lp; 61.46.Hk; 61.46.-w; 68.65.Hb; 61.82.Rx  相似文献   

9.
We demonstrate atomic-column imaging by scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). The silicon atomic-columns of a beta-Si3N4 (0 0 1) specimen are clearly resolved. The atomic-site dependence and the energy-loss dependence of the spatial resolution are elucidated on the basis of the experimental results and multislice calculations. We describe two decisive factors for realizing atomic-column imaging in terms of localization in elastic and inelastic scattering. One is the channeling of the incident probe due to dynamical diffraction, which has atomic-site dependence. The other is the localization in inelastic scattering; in addition to the energy-loss dependence of delocalization, we point out its dependence on the offset energy from the ionization energy, i.e., an additional localization factor concerning the Bethe surface. The present atomic-column observation of the Si-L core-loss image indicates that the local approximation, which can be interpreted intuitively, is achievable under appropriate experimental conditions, such as high-energy-loss, a small convergence angle and a large collection angle (e.g., 400 eV, 15 and 30 mrad, respectively).  相似文献   

10.
An imaging technique of electrically detected magnetic resonance (EDMR) was newly developed. Because the EDMR signal is obtained from paramagnetic recombination centers, one may expect the image to represent the distribution of defect and/or impurity sites in the sample. We successfully obtained EDMR images of a light-illuminated silicon plate 8 mm in width and 15 mm in length, which was cut from a silicon wafer (n-type, 100 Omega cm), under ESR irradiation at a frequency of 890 MHz (wavelength, 340 mm). The reproducibility of the EDMR image obtained from a sample was amply satisfactory. When the oxidized surface of the silicon was removed, the EDMR signal disappeared. Although the EDMR signal reappeared when the surface of the sample became reoxidized, the EDMR image obtained was slightly different from the earlier one. This finding shows that the EDMR image obtained from the sample shows the distribution of defects at the Si/SiO(2) interface.  相似文献   

11.
Electronic properties of the Si/SiO2 interface from first principles   总被引:1,自引:0,他引:1  
Unoccupied oxygen p-projected densities of states, calculated from first principles in a model Si/SiO(2) interface, are found to reproduce trends in recent atomic resolution electron energy-loss spectra [D. A. Muller et al., Nature (London) 399, 758 (1999)]. The shape of the unoccupied states and the magnitude of the local energy gap are explicitly related to the number of O second neighbors of a given oxygen atom. The calculated local energy gaps of the oxide become considerably smaller within 0.5 nm of the interface, suggesting that the electronic properties do not change abruptly at the interface.  相似文献   

12.
Auger spectroscopy, electron energy loss spectroscopy and ion depth profiling techniques, under ultra high vacuum conditions, have been used in a comparative study of the oxidation of clean and gold precovered silicon (111) surfaces. Exposure of a Si surface covered by a few Au monolayers to an oxygen partial pressure induces the formation of SiO4 tetrahedra even at room temperature. In contrast, oxidation under the same conditions of a clean Si(111) surface leads to the well known formation of a chemisorbed oxygen monolayer. In the case of the Au covered surfaces, the enhancement of the oxide growth is attributed to the presence of an AuSi alloy where the hybridization state of silicon atoms is modified as compared to bulk silicon. This Au catalytic action has been investigated with various parameters as the substrate temperature, oxygen partial pressure and Au coverage. The conclusions are two fold. At low temperature (T < 400°C), gold atoms enhance considerably the oxidation process. SiO4 tetrahedra are readily formed even at room temperature. Nevertheless, the SiO2 thickness saturates at about one monolayer, this effect being attributed to the lack of Si atoms alloyed with gold in the reaction area. By increasing the temperature (from 20°C to ~400°C), silicon diffusion towards the surface is promoted and a thicker SiO2 layer can be grown on top of the substrate. In the case of the oxidation performed at temperature higher than 400°C, the results are similar to the one obtained on a clean surface. At these temperatures, the metallic film agglomerates into tridimensional crystallites on top of a very thin AuSi alloyed layer. The fact that the latter has no influence on the oxidation is attributed to the different local arrangement of atoms at the sample surface.  相似文献   

13.
A new method of solid-state epitaxy of silicon carbide (SiC) on silicon (Si) is proposed theoretically and realized experimentally. Films of various polytypes of SiC on Si(111) grow through a chemical reaction (at T = 1100–1400°C) between single-crystal silicon and gaseous carbon oxide CO (at p = 10–300 Pa). Some silicon atoms transform into gaseous silicon oxide SiO and escape from the system, which brings about the formation of vacancies and pores in the silicon near the interface between the silicon and the silicon carbide. These pores provide significant relaxation of the elastic stresses caused by the lattice misfit between Si and SiC. X-ray diffraction, electron diffraction, and electron microscopy studies and luminescence analysis showed that the silicon carbide layers are epitaxial, homogeneous over the thickness, and can contain various polytypes and a mixture of them, depending on the growth conditions. The typical pore size is 1 to 5 μm at film thicknesses of ~20 to 100 nm. Thermodynamic nucleation theory is generalized to the case where a chemical reaction occurs. Kinetic and thermodynamic theories of this growth mechanism are constructed, and the time dependences of the number of new-phase nuclei, the concentrations of chemical components, and the film thickness are calculated. A model is proposed for relaxation of elastic stresses in a film favored by vacancies and pores in the substrate.  相似文献   

14.
Experimental parameters used in the annular bright field (ABF) imaging method were tested using images simulated with the multislice method. Images simulated under identical conditions were found to agree well with experimental images. The ABF technique was shown to be relatively insensitive to the sample thickness and the defocus. In experimental ABF images, atomic columns exhibited dark contrast over a wide range of specimen thickness and defocus values, from 10 to 70 nm and ?20 to +20 nm, respectively. A series of diffraction patterns at atomic columns, obtained using the diffraction imaging method, exhibited higher intensities in their central regions (0–11 mrad) for light elements and in their peripheral regions (11–22 mrad) for heavy elements. The results indicated that the contrast of light elements is enhanced by subtraction of the central region of the transmitted beam, since this is blocked by a circular mask in the ABF-STEM technique. Thus, the overall contrast of light elements is greatly improved, allowing them to be clearly visualized.  相似文献   

15.
Recently, an EFTEM imaging method, exploiting the inelastically scattered electrons in the 60-90eV energy range, was proposed to visualise Ge in SiGe alloys [Pantel, R., Jullian, S., Delille, D., Dutartre, D., Chantre, A., Kermarrec, O., Campidelli, Y., Kwakman, L.F.T.Z., 2003. Inelastic electron scattering observation using Energy Filtered Transmission Electron Microscopy for silicon-germanium nanostructures imaging. Micron 34, 239-247]. This method was proven to be highly more efficient in terms of noise, drift and exposure time than the imaging of the weak and delayed ionization GeL2,3 edge at 1236eV. However, the physical phenomenon behind this Ge contrast was not clearly identified. In this work, we explain the origin of this Ge contrast, by comparing in details EELS low-loss spectra (<100eV) recorded from pure Si and Ge crystals. High resolved low-loss experiments are performed using analytical Field Emission Gun Transmission Electron Microscopes fitted or not with a monochromator. Low-loss spectra (LLS) are then deconvoluted from elastic/quasi-elastic and plural scattering effects. The deconvolution procedure is established from Si spectra recorded with the monochromated machine. The absence of second plasmon and the measurement of a band gap (1.12eV) on the Si single scattering distribution (SSD) spectrum allowed us to control the accuracy of the deconvolution procedure at high and low energy and to state that it could be reliably applied to Ge spectra. We show that the Ge-M4,5 ionisation edge located at 29eV, which is shadowed by the high second plasmon in the unprocessed Ge spectrum, can be clearly separated in the single scattering spectrum. We also show that the front edge of Ge-M4,5 is rather sharp which generates a high intensity post edge tail on several tens of eV. Due to this tail, the Si and Ge EELS signals in the 60 to 100eV energy window are very different and the monitoring of this signal gives information about the Ge concentration inside SiGe alloys. It is now evident that the EFTEM imaging technique proposed to quantify Ge (90eV/60eV image ratio) in Si-Ge nanostructures is valid and is a relevant way of exploiting the Ge-M4-5 ionisation edge.  相似文献   

16.
We investigated the diffusion profiles and core-loss fine-structures (ELNES) of thin vanadium nitride films by electron energy-loss spectroscopy (EELS) and energy filtering transmission electron microscopy (EFTEM). The nitride layers have been produced by rapid thermal processing in a NH3 or N2 atmosphere and have then been cross-sectioned with a focused ion beam instrument (FIB) under mild milling conditions to maintain crystallography. For the high-resolution electron energy-loss spectroscopy studies (HREELS), a recently developed TEM gun monochromator, implemented into a 200 kV field emission gun column was used in combination with a new post-column spectrometer. It was found that, dependent on substrate and atmosphere, layers with different vanadium and nitrogen content were formed, showing distinct differences in their ELNES. With an energy resolution at the 0.2 eV level and a TEM beam spot size of approximately 2 nm these layers could be unambiguously identified when compared to theoretical ELNES simulations from the literature.  相似文献   

17.
Concentration gradients surrounding Ni4Ti3 precipitates grown by appropriate annealing in a Ni51Ti49 B2 austenite matrix are investigated by electron energy loss spectroscopy (EELS) and energy filtered transmission electron microscopy (EFTEM). Concentration gradients of approximately 1.0-2.0 at.% in Ni within the surrounding B2 matrix can be detected by both EELS and EFTEM, revealing a Ni depleted zone in the matrix. Besides the concentration gradients, the EELS integrated cross-section of the Ni L(2,3) edges for the Ni-depleted region increased slightly, when compared with a matrix region away from the precipitate and not depleted in Ni.  相似文献   

18.
A method to grow branched carbon nanostructures arrays is presented. We employ the electron-beam-induced deposition method using a transmission electron microscope in poor vacuum conditions where hydrocarbons are present in the chamber. The hydrocarbons are attracted to the substrates by the local electric fields. Saw-tooth nano-patterns were made with a focused ion beam in porous silicon substrates with high porosity in order to create sites with high-local electric fields. We found that the adequate ion dose to create well-defined saw-tooth nano-patterns was between 8 and 10 nC/microm(2). Raman and electron energy-loss spectroscopy on the branched carbon nanostructures show a high concentration of sp(2) sites suggesting that they are made of graphite-like hydrogenated amorphous carbon. Selected area electron diffraction, high-resolution images and energy dispersive X-ray analysis (EDS) are also presented.  相似文献   

19.
A metal–oxide–semiconductor structure containing a single layer of size-controlled silicon nanocrystals embedded into gate oxide was fabricated. Size control for the silicon nanocrystals was realized by using a SiO2/SiO/SiO2 layer structure with the embedded SiO layer having the thickness of the desired Si nanocrystals and using a high-temperature annealing for forming the silicon nanocrystals. Current–voltage, capacitance–voltage, and conductance–voltage characteristics were measured for a sample containing 4-nm-sized crystals. From the Fowler–Nordheim plot an effective barrier height of 1.6 eV is estimated for our silicon nanocrystals. Electron trapping, storing, and de-trapping in silicon nanocrystals were observed by capacitance–voltage and conductance–voltage measurements. The charge density was measured to be 1.6×1012 /cm2, which is nearly identical to the silicon-nanocrystal density measured approximately via a transmission electron microscopy image. Conductance measurements reveal a very low interface charge of our structure. PACS 72.80.Sk; 73.63.Bd; 73.40.Qv  相似文献   

20.
场发射栅孔阵列的制备   总被引:1,自引:0,他引:1       下载免费PDF全文
 采用硅的局部氧化技术以及湿法刻蚀技术,利用2.6 μm的光刻掩模板在n型硅片上形成了栅极孔径为1 μm的场发射阴极的栅极空腔阵列,实现了用大阵点尺寸的栅极掩模板制备较小尺寸栅孔阵列。硅的湿法刻蚀溶液采用各向同性的硝酸和氢氟酸混合溶液,刻蚀后空腔的深度和宽度均随刻蚀时间线性增加。同时,由于刻蚀溶液具有较高的Si/SiO2 刻蚀选择比,栅极孔径随刻蚀时间增大的速度远低于深度和宽度增大的速度,栅极孔径主要取决于掩模的尺寸和氧化层的厚度。通过选择掩模板的尺寸以及氧化层的厚度,采用局部氧化技术和湿法刻蚀技术能够制备出微米或亚微米的场发射阴极的栅极空腔阵列。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号