首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Bin Liu 《中国物理 B》2022,31(5):57802-057802
We theoretically study the near-field couplings of two stacked all-dielectric nanodisks, where each disk has an electric anapole mode consisting of an electric dipole mode and an electric toroidal dipole (ETD) mode. Strong bonding and anti-bonding hybridizations of the ETD modes of the two disks occur. The bonding hybridized ETD can interfere with the dimer's electric dipole mode and induce a new electric anapole mode. The anti-bonding hybridization of the ETD modes can induce a magnetic toroidal dipole (MTD) response in the disk dimer. The MTD and magnetic dipole resonances of the dimer form a magnetic anapole mode. Thus, two dips associated with the hybridized modes appear on the scattering spectrum of the dimer. Furthermore, the MTD mode is also accompanied by an electric toroidal quadrupole mode. The hybridizations of the ETD and the induced higher-order modes can be adjusted by varying the geometries of the disks. The strong anapole mode couplings and the corresponding rich higher-order mode responses in simple all-dielectric nanostructures can provide new opportunities for nanoscale optical manipulations.  相似文献   

2.
Lasing in tilted-waveguide semiconductor laser amplifiers   总被引:2,自引:0,他引:2  
Abstact We have observed the transition from single-pass amplification of the fundamental mode to oscillation in the higher-order modes in tilted semiconductor-based amplifiers using numerical experiments based on a novel finite-difference time-domain treatment of the optical field that includes gain. These results correlate well with laboratory observations of gain-induced oscillation in such amplifiers.  相似文献   

3.
The effect of higher-order modes in fiber bundle imager-based optical coherence tomography (OCT) has been theoretically modeled using coupled fiber mode analysis ignoring the polarization and core size variation in order to visualize the pure effect of multimodal coupling of the imaging bundle. In this model, the optical imaging fiber couples several higher-order modes in addition to the fundamental one due to its high numerical aperture for achieving light confinement to the single core pixel. Those modes become evident in a distance domain using A-mode (depth) OCT based on a mirror sample experiment where multiple peaks are generated by the spatial convolution and coherence function of the light source. The distance between the peaks corresponding to each mode can be estimated by considering the effective indices of coupled (guided) modes obtained from numerically solving the fiber mode characteristics equations and the fiber length. The results have been compared for various types (fiber dimensions and wavelengths) and lengths of fibers, which have mode separation of 715 μm (1404 μm) and 764 μm (1527 μm) for the measurement and analysis, respectively in a 152.5 mm (305 mm)-long imaging fiber.  相似文献   

4.
Long period gratings have been written in highly multimoded optical fiber using 2.4 MeV H+ ions (protons). Implantation of ions with this energy produces a permanent index change of up to 1% in the center of the fiber. The presence of a grating with a period of 1.1 mm produces coupling from the fundamental mode into higher-order modes. Noticeable mode scrambling was observed to occur when only three grating periods were written into the fiber, and the amount of coupling between modes increases as the number of periods was increased to six.  相似文献   

5.
 以磁绝缘传输线振荡器(MILO)中次级电子倍增效应物理图像为基础,对MILO中发生次级电子倍增效应的各阶共振模进行了计算和分析。结果表明:与基阶共振模相比,高阶共振模发生次级电子倍增效应的敏感区域要小得多,对次级电子倍增效应起主要作用的是基阶共振模;减小或抑制次级电子倍增效应,主要应考虑控制基阶共振模的电子倍增作用。  相似文献   

6.
This article presents an investigation of the linear optical properties of a dual-core photonic crystal fiber with a square lattice made of a multicomponent glass in a second communication window. An experimental method based on intermodal interference was used to determine the effective refractive indices of higher-order modes, with knowledge of the fundamental mode dispersion. The effective refractive indices were also determined by an FDTD-based simulation and the obtained values provided a good agreement in comparison to the experimental results. The obtained results help to clarify the nonlinear spectral transformation processes observed in the same fiber at propagation in the higher-order modes.  相似文献   

7.
The combination of ultra-cold atomic clouds with the light fields of optical cavities provides a powerful model system for the development of new types of laser cooling and for studying cooperative phenomena. These experiments critically depend on the precise tuning of an incident pump laser with respect to a cavity resonance. Here, we present a simple and reliable experimental tuning scheme based on a two-mode laser spectrometer. The scheme uses a first laser for probing higher-order transversal modes of the cavity having an intensity minimum near the cavity’s optical axis, where the atoms are confined by a magnetic trap. In this way the cavity resonance is observed without exposing the atoms to unwanted radiation pressure. A second laser, which is phase locked to the first and tuned close to a fundamental cavity mode, drives the coherent atom-field dynamics. PACS 42.50.Vk; 42.55.-f; 42.60.Lh; 34.50.-s  相似文献   

8.
A Bragg grating in a photonic crystal fiber was written and its dependence with temperature and strain analyzed. The two observed Bragg wavelengths correspond to a fundamental and a higher-order mode in the optical fiber. The temperature and strain calibration curves for both modes are measured and found to be distinct. The general properties of gratings in these fibers, and their implications, are enunciated.  相似文献   

9.
We demonstrate an effective approach of mode suppression by simply using a tungsten probe to destroy the external neck surface of polymer microbottle resonators. The higher-order bottle modes with large axial orders,spatially located around the neck surface of the microresonator, will suffer large optical losses. Thus, excitation just with an ordinary free-space light beam will ensure direct generation of single fundamental bottle mode lasers.This method is with very low cost and convenient and can obtain high side-mode suppression factors. Our work demonstrated here may have promising applications such as in lasing and sensing devices.  相似文献   

10.
Previous second-harmonic-generation experiments on metallic split-ring-resonator arrays have been performed at fixed fundamental laser center frequency. Here, we perform nonlinear optical spectroscopy on a first set of samples, revealing pronounced resonances. Furthermore, to clarify the role of higher-order split-ring resonances, we perform additional experiments on a second set of samples in which the fundamental split-ring-resonator resonance frequencies are lithographically tuned, whereas the higher-order resonances are fixed. We find that the higher-order resonances merely reabsorb the second-harmonic generation, revealing the fundamental split-ring resonance as the nonlinear source.  相似文献   

11.
Leakage channel fibers, designed to suppress higher-order modes, demonstrate resonant power loss at certain critical radii of curvature. Outside the resonance, the power recovers to the levels offset by the usual mechanism of bend-induced loss. Using C2 imaging, we experimentally characterize this anomaly and identify the corresponding physical mechanism as the radiative decay of the fundamental mode mediated by the resonant coupling to a cladding mode.  相似文献   

12.
《Optik》2014,125(24):7203-7206
We demonstrate the design, fabrication and characterization of a highly efficient multichannel W3 Y-branch filter in a two dimensional triangular-lattice photonic crystal slab. The coupling properties between high-order waveguide modes and fundamental resonant modes are investigated. By finely adjusting the size of resonant cavities, four higher-order mode channels with different output wavelengths are experimentally realized, which is in agreement with the theoretical simulations. The results show that this kind of filter may be useful in optical integrated circuits with high coupling and transmission efficiency.  相似文献   

13.
Spontaneous decay rates of atoms into guided modes of an optical nanofiber are found for atomic transitions between the hyperfine structure sublevels. The decay rates are evaluated for the hyperfine structure transitions in Rb atoms. The efficiency of the guided mode excitation by spontaneous decay of the specific hyperfine atomic states is examined for both the fundamental fiber mode HE11 and the higher-order modes TE01, TM01, and HE21.  相似文献   

14.
We report detailed measurements of the optical properties of tapered photonic crystal fibers (PCFs). We observe a striking long-wavelength loss as the fiber diameter is reduced, despite the minimal airhole collapse along the taper. We associate this loss with a transition of the fundamental core mode as the fiber dimensions contract: At wavelengths shorter than this transition wavelength, the core mode is strongly confined in the fiber microstructure, whereas at longer wavelengths the mode expands beyond the microstructure and couples out to higher-order modes. These experimental results are discussed in the context of the so-called fundamental mode cutoff described by Kuhlmey et al. [Opt. Express 10, 1285 (2002)], which apply to PCFs with a finite microstructure.  相似文献   

15.
16.
The fundamental azimuthal modes of a constricted annular resonator are investigated. It is found that a given mode of an unconstricted resonator splits into two separate modes in the constricted resonator. One mode is of a higher frequency and has a pressure antinode centered in the constricted region. The other mode is of a lower frequency and has a pressure node centered in the constricted region. The resonance frequency of the higher-frequency modes increases linearly with a decrease in the constricted to unconstricted area ratio, whereas the lower frequency drops nonlinearly. Measurements and theory match to within 0.5% when end corrections and thermo-viscous losses are included in the system model. It was found that end correction impedances derived by mode-matching techniques were the only ones accurate enough to match the measurements and computation to within the error bounds.  相似文献   

17.
The necessary conditions for nonlinear excitation of higher-order modes in a single-mode step-index optical fiber are analyzed. The cutoff conditions for such an optical waveguide are investigated taking into account Kerr nonlinearity. The minimal power of optical pulses required for fulfilling the necessary conditions for nonlinear excitation of higher-order modes in a single-mode step-index fiber is calculated as a function of the normalized frequency. The allowed ranges of variation of the normalized frequency and optical-radiation power are estimated. It is demonstrated that the conditions necessary for nonlinear excitation of a higher-order mode in a step-index single-mode optical fiber can be created for optical pulses shorter than 500 fs.  相似文献   

18.
A new and simple mathematical formulation that is employed to analyze numerically coupled-mode equations modeling uniform and non-uniform gratings in optical fiber is investigated. This method would be straightforward and thus beneficial to solve multimode coupled equations in comparison with a previously used fundamental matrix method, and the Runge--Kutta algorithm. The new formulation proposed in this study is applied to calculate transmission and reflection spectra of core mode and higher-order cladding modes of acoustically induced superstructure modulation caused by microbending through fiber Bragg gratings (FBGs). Co-directional and contra-directional couplings based on acoustically induced modulation in FBGs have been discussed for a variety of induced coupling coefficients.  相似文献   

19.
We design a multi-layer cladding large-core planar waveguide that supports a single guided mode. The waveguide works on the principle of higher-order mode discrimination. The cladding of the waveguide is formed by alternate low- and high- index regions, which helps leaking out of higher-order modes while retaining the fundamental mode over the entire length of the waveguide. The structure is analyzed by the transfer-matrix method and the leakage losses of the modes have been calculated. We show that a waveguide formed in silica with numerical aperture 0.24 and core width 10 μm can be designed to exhibit single-mode operation at 1550-nm wavelength. Such a structure should find applications in high-power planar waveguide lasers and amplifiers.  相似文献   

20.
Mode coupling between the fundamental core mode of an as-drawn optical fiber operating far from cutoff and higher-order modes in the plastic jacketing has been observed. In one fiber, the transmission spectrum of the core exhibited five distinct minima between 1200 and 1900 nm. By approximating the fiber jacket as an asymmetric slab waveguide of infinite lateral extent, the wavelengths of these transmission features were successfully predicted using coupled-mode theory. Since conditions at the jacket surface influence the transmission spectrum, this coupling effect potentially enables new applications for environmental sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号