首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
在以前的工作中,本文作者曾对于甘蔗纤维板穿孔结构前加一层玻璃棉的吸声特性进行过实验测量。这种复合结构的剖面图见图1:多孔材料层厚l,穿孔板厚t,与刚性壁距离L。这种桔构的表面法向声阻抗率Z_s为  相似文献   

2.
微穿孔板结构的设计   总被引:23,自引:1,他引:22  
微穿孔板结构是无需多孔性材料的宽带共振吸收系统,这是过去为使吸声结构不受使用条件而研制的。在本文中,对穿孔板及穿孔板结构的特性做了进一步的分析,求得给定简单共振系统的吸声特性直接了当计算其结构参数的方法,简化了设计工作。对双层微穿孔板结构,证明其高频率特性基本与简单共振结构相同,次级共振结构的作用主要是使有效空腔在低频加大,因而展宽低频响应,这也使设计化简。文中还讨论了根据结构求出吸声特性的方法。  相似文献   

3.
魏荣爵  余崇智 《物理学报》1957,13(5):365-387
本报告首先列举用驻波分析法所测得的若干国产吸声材料——包括纤维板,木屑板,木丝板,玻璃绵砖,毛毡及棉絮等等——的声波垂直入射的吸声系数,并对于吸声系数的定义以及几种不同吸声系数间的转换问题也作了简单的讨论。测量结果指出:许多产品吸声效率都很低,特别是在低频。(某些产品作为“薄板吸声”来控制室内音质是可以的,但不宜当作多孔性材料来使用。某些厂家在广告中注以“隔声”和“隔热”等名词尤其是不恰当的。)其次,对于(1)材料粉刷,涂漆,和穿孔的影响,(2)有效厚度和流阻的关系,以及(4)薄板,薄的多孔性材料,和穿孔吸声结构的吸声性能等,都作了测量,并附以必要的理论说明。对于穿孔吸声结构阐述较多,主要是由于这种吸声结构应用的范围可以很广泛而目前国内使用得还远不够多。最后作者们根据所测定的结果,对国内吸声材料的使用和制造提出了一些初步的建议。  相似文献   

4.
本文提出将马氏微穿孔板理论与传递导纳法相结合,建立简化的微穿孔板吸声结构的有限元仿真计算方法。基于阻抗管法材料吸声系数测试原理建立了吸声系数仿真实验模型,对微穿孔板结构的吸声系数进行了仿真计算,并与理论计算结果做了对比,说明了该简化方法的合理可行。同时,对金属和非金属材料的微穿孔板计算时温度传导系数的影响做了比较说明。  相似文献   

5.
微穿孔板吸声结构水下应用研究   总被引:2,自引:0,他引:2       下载免费PDF全文
王泽锋  胡永明  倪明  罗洪 《应用声学》2008,27(3):161-166
马大猷教授提出的微穿孔板吸声结构在空气噪声降低和隔离方面得到了广泛的应用,但未见水下应用的相关研究和报道。本文将空气中微穿孔板理论应用到水中,得到了水下微穿孔板吸声结构的吸声公式。通过理论分析,得出了微穿孔板结构直接应用于水中无法获得宽频吸收的结论。提出了通过匹配液将微穿孔板间接应用到水下的设想。设计了单层板和双层板吸声结构,并对它们的吸声特性进行了理论分析与仿真。结果表明,本文设计的微穿孔板吸声结构在水中能够获得优于空气中的宽频带吸声效果。实验测量了自制的微穿孔板吸声结构,吸声系数的测量值与理论曲线基本吻合,从而验证了理论分析的正确性。  相似文献   

6.
吸声型薄膜声学超材料低频宽带吸声性能研究*   总被引:1,自引:1,他引:0       下载免费PDF全文
本文根据吸声型薄膜声学超材料的吸声机理,在传统的吸声型薄膜声学超材料结构的基础上引入质量非对称结构, 优化了不同厚度质量片的排布方式,并根据优化结果制备了能够实现低频宽带吸声效果的薄膜声学超材料样品。对其进行声学实验的测试结果显示,样品在 100-1000Hz 频率范围内的平均吸声系数达 0.25,并在 250-800Hz 频率范围内出现了多个共振吸收峰,且实验测得的吸声系数曲线与仿真曲线的趋势有较高的一致性。因此该样品实现了低频宽带吸声。  相似文献   

7.
本文介绍一种在穿孔板表面再覆盖一层薄膜的吸声结构,着重对这种加膜穿孔板的声学性能作严格的理论分析.从基本的声学理论出发,导出了反映加膜穿孔板声传递特性的普遍关系式,获得了加膜穿孔板声阻抗率的计算公式.文中讨论了声阻率随频率,空气层厚度以及薄膜面密度等重要参量变化的规律.理论计算结果与实验数据良好相符.所得结论为这种新型吸声结构的优化设计提供了严格的理论基础.  相似文献   

8.
针对单层微穿孔板的低频吸声问题提出了微穿孔板复合板型声学超材料结构。将板型声学超材料置入微穿孔板结构的背腔内部实现结构复合。实验结果表明:在相同背腔厚度下,复合结构的吸声性能整体优于单层微穿孔板结构,其中复合结构的吸声曲线从396~892 Hz均大于0.6,在453 Hz处吸声系数达到0.972。利用有限元方法对复合结构进行了仿真,仿真计算的吸声曲线与实验吸声曲线的趋势基本相同,同时发现低频吸声主要由板型声学超材料与声波相互作用贡献。板型声学超材料的吸声峰值的对应频率处,其等效动态质量密度从正变负。在复合结构内部的微穿孔板和板型声学超材料存在相互耦合作用,使得复合结构的第一峰值发生微小偏移。增加板型声学超材料的质量块重量可以使第一吸声峰值向低频移动;保持总背腔厚度不变,增加板型声学超材料的子腔厚度,也可以使第一吸声峰向低频移动。   相似文献   

9.
扩散场内微穿孔板吸声特性的实验研究   总被引:1,自引:1,他引:0  
在驻波管和混响场内对微穿孔板吸声结构做了吸声测量。同时在混响室对微穿孔板加吸声材料混合结构做了吸声测量。目的是了解微穿孔板在随机入射场或混响场内的吸声特性与垂直入射的关系。文中给出计算及测量结果,并说明了影响微穿孔板吸声结构特性的因素,以及在实际应用中的注意点。对今后要进行的工作提出了建议。  相似文献   

10.
微穿孔吸声体随机入射吸声性能   总被引:4,自引:2,他引:2  
依据“扩散场内微穿孔板吸声特性的实验研究”一文初步实验结果,对微穿孔板吸声体在扩散场内吸声特性进行了进一步探讨。在穿孔板常数K值较大时,(K>2),发现扩散场吸声特性与垂直入射情况相似但移到较高频率范围,除主要吸声频带外,在较高频率由于余切函数的多支性,还有次吸声频带但影响较小.k值较小(K≤2)时,扩散声场吸声特性在高频段的次吸声频带越来越重要,逐渐成为吸声的重要因素,使微穿孔板吸声结构在三或四倍频程以上具有高吸声系数,增加了它的实用价值。文中对扩散场内微穿孔扳吸声性质的变化作了具体计算并作了解释.  相似文献   

11.
The sound absorption mechanism of microperforated panel (MPP) absorbers and panel/membrane-type absorbers is both based on a certain resonance system and utilising its resonance effect. However, the relationship between the absorption mechanisms of MPPs and panel/membrane-type absorbers has not been discussed: it is not clarified whether they can occur simultaneously, or how they interfere each other. On the other hand, in a previous study there is an attempt to cause both absorption mechanisms simultaneously. In this paper, using an electro-acoustical equivalent circuit model, their sound absorption mechanisms and their relationship are discussed. In this study, three cases are considered: (1) the case in which only the mass reactance of the MPP is considered, (2) the case in which the losses of the panel is considered, and (3) the case in which the sound absorption of the back wall surface is considered. The results suggest that the microperforated panel absorption, which is Helmhotz-type resonance, and the panel/membrane-type absorption can be regarded as phenomena of the same kind which can be smoothly transformed into each other by changing a parameter, and can be consistently modelled and comprehensively discussed.  相似文献   

12.
Super-aligned carbon nanotube (SACNT) arrays are grown on the surface of micro perforated panel (MPP) in the hope of improving the acoustic performance of MPP absorbers by virtue of their unique properties. Scanning electron microscopy reveals that SACNT arrays did not block the perforations of MPPs or changed the perforation diameter due to their “super-aligned” nature, although MPPs are thickened. The absorption effect of SACNT arrays which are of the same and different lengths with different incident side on MPP absorbers are investigated, and standing wave tube method is used to determine the normal sound absorption coefficient. Results show that both of the lengths of SACNT arrays and the incident side have effects on the sound absorption performance of MPP absorbers. And generally SACNT arrays help to improve the sound absorption capacity of MPP absorbers in low-frequency regions only when the SACNT arrays surface is the incident side. SACNT arrays decrease absorption performance of MPP absorbers when the MPP surface is used as the incident side. Moreover, SACNT arrays are found to increase the acoustic ability of MPP absorbers with the same structure parameters monotonically at lengths up to 600 μm in the condition that the SACNT arrays surface is used as the incident side.  相似文献   

13.
A numerical study of double-leaf microperforated panel absorbers   总被引:1,自引:0,他引:1  
Microperforated panel (MPP) absorbers are promising as a basis for the next-generation of sound absorbing materials. Typically, they are backed by an air-cavity in front of a rigid wall such as a ceiling or another interior surface of a room. Indeed, to be effective, MPP absorbers require the Helmholtz-type resonance formed with the backing cavity. Towards the creation of an efficient sound-absorbing structure with MPPs alone, the acoustical properties of a structure composed of two parallel MPPs with an air-cavity between them and no rigid backing is studied numerically. In this double-leaf MPP (DLMPP) structure, the rear leaf (i.e., the MPP remote from the incident sound) plays the role of the backing wall in the conventional setting and causes resonance-type absorption. Moreover, since a DLMPP can work efficiently as an absorber for sound incidence from both sides, it can be used efficiently as a space absorber, e.g., as a suspended absorber or as a sound absorbing panel. The sound absorption characteristics of the double-leaf MPP are analysed theoretically for a normally incident plane wave. The effects of various control parameters are discussed through a numerical parametric study. The absorption mechanisms and a possible design principle are discussed also. It is predicted that: (1) that a resonance absorption, similar to that in conventional type MPP absorbers, appears at medium-to-high frequencies and (2) that considerable “additional” absorption can be obtained at low frequencies. This low-frequency absorption is similar to that of a double-leaf permeable membrane and can be an advantage compared with the conventional type of MPP arrangement.  相似文献   

14.
Closed-cell metallic foams are known for their rigidity, lightness, thermal conductivity as well as their low production cost compared to open-cell metallic foams. However, they are also poor sound absorbers. Similarly to a rigid solid, a method to enhance their sound absorption is to perforate them. This method has shown good preliminary results but has not yet been analyzed from a microstructure point of view. The objective of this work is to better understand how perforations interact with closed-cell foam microstructure and how it modifies the sound absorption of the foam. A simple two-dimensional microstructural model of the perforated closed-cell metallic foam is presented and numerically solved. A rough three-dimensional conversion of the two-dimensional results is proposed. The results obtained with the calculation method show that the perforated closed-cell foam behaves similarly to a perforated solid; however, its sound absorption is modulated by the foam microstructure, and most particularly by the diameters of both perforation and pore. A comparison with measurements demonstrates that the proposed calculation method yields realistic trends. Some design guides are also proposed.  相似文献   

15.
管束穿孔板的管腔耦合共振吸声机理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
苏玉  梅中建  吕亚东  程晓斌 《声学学报》2021,46(6):1202-1211
为了揭示管束穿孔板共振吸声结构的吸声机理,利用热黏性条件下基于有限元算法的管束穿孔板仿真模型,研究了平面声波正入射条件下,管束穿孔板内部声场分布特征,并利用阻抗管对吸声系数的理论仿真结果进行了试验验证.结果表明,管束穿孔板在低频主要靠腔体共振吸声,在高频主要靠管共振吸声,管束穿孔板整体呈现出较为明显的管腔耦合共振吸声特征。管束穿孔板共振时管中声强和质点法向振速较大,高频次吸声峰频点处管中和腔中均有驻波形成,频率越高驻波数量越多.管束穿孔板的耦合共振受到管长、腔深、穿孔率和管内径等参数变化的影响,管长对高频耦合共振的影响最大,管长增大使高频主吸声峰频点移向低频,并使相邻主吸声峰之间的间距减小.   相似文献   

16.
A theoretical method for calculating the absorption coefficient of the multi-layer absorbers composed of perforated plates, airspaces and porous materials is proposed. Initially, for multi-layer absorbers composed either of perforated plates and airspaces or perforated plates and porous materials, the acoustic impedance is calculated using an electro-acoustic analogy. Then, for multi-layer absorbers composed of perforated plates, airspaces and porous materials, the acoustic impedance is calculated using an iterative method. Finally, theoretical calculations for the absorption coefficient of three types of multi-layer absorbers composed of different materials and including perforated plates are carried out. The results are validated by experimental results.  相似文献   

17.
This paper is concerned with the use of a perforated panel with extended tubes (PPET) to improve the sound absorption confined to low frequencies. In comparison with a micro-perforated panel (MPP), the sound absorption can be significantly improved by using the PPET at the expense of the bandwidth of the sound absorption. A particular configuration combining four parallel-arranged PPETs with different cavities is introduced to achieve a wider bandwidth of the sound absorption at low frequencies. The analysis is extended to the combination of three parallel-arranged PPETs and a MPP to further increase the bandwidth of the sound absorption. A theoretical model is described to predict the sound absorption coefficient and the simulated annealing method is introduced to the proposed absorbers, allowing optimization of the overall performance. The theory with experimental validations demonstrates that the proposed configurations offer a potential improvement of more than one octave in the bandwidth of the sound absorption at low frequencies.  相似文献   

18.
Theoretical and experimental investigations on the performance of micro-perforated -panel absorbers are reviewed in this paper. By reviewing recent research work, this paper reveals a relationship between the maximum absorption coefficient and the limit of the absorption frequency bandwidth. It has been demonstrated that the absorption frequency bandwidth can be extended up to 3 or 4 octaves as the diameters of the micro-holes decrease. This has become possible with the development of the technologies for manufacturing micro-perforated panels, such as laser drilling, powder metallurgy, welded meshing and electro-etching to form micrometer order holes. In this paper, absorption characteristics of such absorbers in random fields and in high sound intensity are discussed both theoretically and experimentally. A new absorbing structure based on micro-perforated-panel absorbers demonstrate experimentally high sound absorption capability. This review shows that the micro-perforated-panel absorber has potentials to be one of ideal absorbing materials in the 21st century.  相似文献   

19.
Panel-type sound absorbers are commonly used to absorb low-frequency sounds. Recently, a new type of panel/membrane absorbers has been proposed as a next-generation sound absorber free from environmental problems. On the other hand, it is known that placing a honeycomb structure behind a porous layer can improve sound absorption performance and a similar effect can be obtained for microperforated-panel absorbers. Herein, the sound absorption characteristics of a panel sound absorber with a honeycomb in its back cavity are theoretically analyzed. The numerical results are used to discuss the variations in the sound absorption characteristics due to the honeycomb as well as the mechanism for sound absorption.  相似文献   

20.
Because microperforated panels (MPPs) can provide wide-band sound absorption without fibrous and porous materials, they are recognized as next-generation absorption materials. The fundamental absorbing mechanism is Helmholtz-resonance absorption due to the perforations and air-back cavity. Consequently, MPPs are usually placed in front of rigid-back walls. However, one of the authors has proposed MPP space sound absorbers without backing structures. Among these space absorbers, cylindrical MPP space absorbers and rectangular MPP space absorbers are advantageous due to their design flexibility and easy-to-use properties. Although their performances have been investigated experimentally, it is necessary to predict their absorption characteristics to develop improved shapes and efficient designs. Herein their absorption characteristics are numerically predicted using the two-dimensional boundary element method, and the applicability of a numerical method as a design tool to sufficiently predict the performance of MPP space absorbers is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号