首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
2.
《Ultrasonics sonochemistry》2014,21(6):1976-1981
This report describes the effects of H2O2 concentration (0.01, 0.1, 1, and 10 mM) on the sonochemical degradation of phenol and bisphenol A (BPA) using an ultrasonic source of 35 kHz and 0.08 W/mL. The concentration of the target pollutants (phenol or BPA), total organic carbon (TOC), and H2O2 were monitored for each input concentration of H2O2. The effects of H2O2 on the sonochemical degradation of phenol was more significant than that of BPA because phenol has a high solubility and low octanol–water partition coefficient (Kow) value and is subsequently very likely to remain in the aqueous phase, giving it a greater probability of reacting with H2O2. The removal of TOC was also enhanced by the addition of H2O2. Some intermediates of BPA have a high Kow value and subsequently have a greater probability of pyrolyzing by the high temperatures and pressures inside of cavitation bubbles. Thus the removal efficiency of TOC in BPA was higher than that of phenol. The removal efficiencies of TOC were lower than the degradation efficiencies of phenol and BPA. This result is due to the fact that some intermediates cannot readily degrade during the sonochemical reaction. The H2O2 concentration decreased but was not completely consumed during the sonochemical degradation of pollutants. The initial H2O2 concentration and the physical/chemical characteristics of pollutants were considered to be important factors in determining the formation rate of the H2O2. When high concentration of H2O2 was added to the solution, the formation rates were relatively low compared to when low concentrations of H2O2 were used.  相似文献   

3.
The sonochemiluminescence (SCL) of luminol reaction was studied in alkaline medium using a dissolution of luminol, sodium carbonate, hydrogen peroxide and carbon tetrachloride. The presence of carbon tetrachloride enhances the SCL reaction up to allow the study of the reaction in real time using a cell phone video camera. This experimental setup allows the study of the cavitation dynamics in real time and through all the reactor, including homogeneous and heterogeneous cavitation zones. Finally, it was tested the effect of ethanol, the ionic strength and pH on the SCL.  相似文献   

4.
A sonophotochemical oxidation process has been used for the treatment of an aqueous solution of phenol. The aim of this work is to evaluate the effect of nitrate ions on hydroxyl radical production and on phenol oxidation. It has been demonstrated that ultrasound can produce NOx (nitrate and nitrite), with a production rate of 2.2 μM min−1. The photolysis of nitrate can significantly improve the hydroxyl radical production. The apparent rate constant for hydroxyl radical production increased from 0.0015 min−1 to 0.0073 min−1 while increasing initial nitrate concentration from 0 to 0.5 mM. The concentration of hydroxyl radical was directly proportional to the initial nitrate concentration. Using US/UV process, the apparent reaction rate constant of phenol degradation in the presence of nitrate reached 0.020 min−1, which was relatively lower than the value obtained (0.027 min−1) in the absence of nitrate. It appeared that, nitrate ions can inhibit the sonochemical degradation of organic compounds such as phenol.  相似文献   

5.
超声空化状态对苯酚降解的影响   总被引:5,自引:0,他引:5       下载免费PDF全文
给出不同空化状态下超声波降解苯酚溶液的实验结果,比较了相应的声压级频谱和合成声强。研究了苯酚溶液的浓度,二阶铁盐,超声辐射时间对苯酚降解率的影响,讨论了不同空化状态下的声压级频谱特征。  相似文献   

6.
In this work we have investigated the role of porous carbon material used as a photocatalyst and a catalyst support in the carbon/titania composite in the photodegradation of phenol, and compared the results to those of bare titanium oxide. The immobilization of titania on an activated carbon provoked acceleration of the degradation rate under UV irradiation, which is likely to be attributed to the porosity of the carbon support. The identification of the degradation intermediates detected in the solution showed that the presence of the carbon support affects the nature of phenol degradation mechanism through the formation of different intermediates. Additionally, phenol photodecomposition rate over the carbon support outperformed that attained in the carbon/titania composite, suggesting an important self-photoactivity of the carbon support.  相似文献   

7.
In the present work, the degradation of methomyl has been carried out by using the ultrasound cavitation (US) and its combination with H2O2, Fenton and photo-Fenton process. The study of effect of operating pH and ultrasound power density has indicated that maximum extent of degradation of 28.57% could be obtained at the optimal pH of 2.5 and power density of 0.155 W/mL. Application of US in combination with H2O2, Fenton and photo-Fenton process has further accelerated the rate of degradation of methomyl with complete degradation of methomyl in 27 min, 18 min and 9 min respectively. Mineralization study has proved that a combination of US and photo-Fenton process is the most effective process with maximum extent of mineralization of 78.8%. Comparison of energy efficiency and cost effectiveness of various processes has indicated that the electrical cost of 79892.34 Rs./m3 for ultrasonic degradation of methomyl has drastically reduced to 2277.00 Rs./m3, 1518.00 Rs./m3 and 807.58 Rs./m3 by using US in combination with H2O2, Fenton and photo-Fenton process respectively. The cost analysis has also indicated that the combination of US and photo-Fenton process is the most energy efficient and cost effective process.  相似文献   

8.
研究了利用强电离放电产生等离子体方法制取羟基自由基氧化降解高浓度苯酚废水。当羟基自由基浓度达到1 037 mg·L-1时,初始浓度为1 215 mg·L-1的废水降解率达99.11%;初始浓度为8 853 mg·L-1的废水苯酚浓度下降到6 250 mg·L-1,1 mg羟基自由基可处理苯酚2.5 mg。在同样羟自由基浓度下,苯酚初始浓度越小,去除率越高;但初始浓度越高,处理的绝对量越大。阐述并解释了不同降解阶段废水pH值、电导率与羟基自由基浓度变化的关系。随着羟自由基浓度的增大,废水酸碱性由接近中性逐渐转为酸性,浓度越大,酸性越强;继续增大羟自由基浓度,变化渐趋平缓。随着羟自由基的通入,电导率有一个微小的降低阶段然后开始上升,说明苯酚不断的被氧化为有机酸。通过紫外图谱和色谱分析了降解中间产物,表明氧化初始阶段邻苯二酚、对苯二酚和苯醌是其中重要的化合物。  相似文献   

9.
The N-doped anatase TiO2 photocatalysts were prepared via solvothermal and ethylenediamine reflux treatment, followed by the sequential calcination in air and NH3/N2 atmosphere. The resulting photocatalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and UV-vis diffuse reflectance spectra. The results revealed that the prepared N-doped anatase TiO2 had characteristics of small crystallite size, large surface area, high crystallinity and visible light response. The prepared N-doped anatase TiO2 photocatalysts showed much higher photocatalytic activity than N-doped Degussa P25 for the degradation of phenol under both ultraviolet and visible light irradiation, owing to more highly oxidizing hydroxyl radical which was the main oxidative species responsible for the degradation of phenol.  相似文献   

10.
An ultrasonic microreactor with rough microchannels is presented in this study for oil-in-water (O/W) emulsion generation. Previous accounts have shown that surface pits or imperfections localize and enhance cavitation activity. In this study cavitation bubbles are localized on the rough microchannels of a borosilicate glass microreactor. The cavitation bubbles in the microchannel are primarily responsible for emulsification in the ultrasonic microreactor. We investigate the emulsification mechanism in the rough microchannels employing high-speed imaging to reveal the different emulsification modes influenced by the size and oscillation intensity of the cavitation bubbles. The effect of emulsification modes on the O/W emulsion droplet size distribution for different surface roughness and frequency is demonstrated. The positive effect of the frequency on minimizing the droplet size utilizing a reactor with large pits is presented. We also demonstrate microreactor systems for a successful generation of miniemulsions with high dispersed phase volume fractions up to 20%. The observed emulsification mechanism in the rough microchannel offers new insights into the utility and scale-up of ultrasonic microreactors for emulsification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号