首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
相比于其他制冷剂,固氮具有热容大的特点,利用这一特点冷却高温超导磁体,可以实现超导磁体系统较高的热稳定性。将高温超导浸泡在液氮内,采用单台10K双级G-M制冷机将液氮变成固氮,可获得最低8K的固氮系统。对固氮冷却的超导磁体进行10~60K的宽温区控温实验,可获得±0.05K的高稳定性控温精度,从而进行不同温度下超导磁体的临界电流、临界磁场以及稳定性研究。  相似文献   

2.
介绍一种用于量子电阻测量的超导磁体及低温系统设计和研制.采用一台G-M制冷机为冷源,一部分冷量采用传导冷却的方式冷却超导磁体,另一部分冷量用于预冷氦气,然后通过毛细管节流降温达到超低温,最终实现8T强磁场和1.5K极低温的应用环境.  相似文献   

3.
为满足强流重离子加速器装置(HIAF)中各类超导磁体300~80 K的预冷需求,设计一套液氮为冷源、氦气为循环介质的预冷回热组件。采用Aspen HYSYS对预冷回热组件300~80 K降温过程进行动态模拟,分析了组件模式切换时三种典型工况下系统的瞬态热工水力特性。结果表明预冷回热组件在最大流量30 g/s时可实现温度300~80 K连续可调,调节精度优于±3 K,可为HIAF各类磁体测试提供稳定可靠的冷源。  相似文献   

4.
制冷机冷却型超导磁体杜瓦的研制   总被引:1,自引:1,他引:0  
介绍了带制冷机冷却的超导磁体系统杜瓦的设计、制作及实验结果分析。杜瓦采用 4 0 K、10 K双制冷屏结构 ,其室温磁场孔径为 75 mm,长 4 15 m m。试验结果为 :液氦蒸发率为 0 .6 9升 /天 (在 2 0天连续试验期内 ) ,优于合同规定的指标 (2 .4升 /天 )。双制冷屏由一台双级 G- M制冷机冷却 ,工作时一级冷屏温度为 35 K,二级冷屏温度为 7.0 K。磁体系统的磁场强度为 3T,满足了用户的使用要求  相似文献   

5.
为了减小磁共振成像低温超导磁体冷却过程中的液氮和液氦消耗,提高降温过程的可控性,提出基于千瓦级斯特林制冷机的氦气循环冷却系统,可将磁体快速冷却至液氮温度以下。对冷却系统建立数学物理模型并开展数值计算,在氦气平均压力为1.7 bar、流速为9.8 m/s时,系统冷却总重量为2 t的室温超导磁体至液氮温度仅需59.0 h。基于模拟结果开展实验研究,在相同条件下磁体实际降温时间为69.5 h,模拟计算与实验结果吻合良好。结果表明,该系统具备快速冷却超导磁体的能力,具有广阔的应用前景和深远的影响。  相似文献   

6.
该装置由11T超导强磁体;ф_内=30mm室温孔径的金属内杜瓦瓶;80升液氦金属外杜瓦瓶;JWL-150A超导磁体电源以及防辐射屏、吊杆、引线等五部分构成。金属内杜瓦瓶直接插在磁体内径中,其实验空间与外界相通,它可在4.2—400K之间变温,在0—10T之间改变磁场强度,也可随时更换测试样品。金属外杜瓦瓶采用气冷多屏绝热的结构。它自身的蒸发率为0.21升/小时。在内杜瓦瓶温度~70K、场强为10T时,液氦蒸发率为1.3—1.6升/小时之间。  相似文献   

7.
本文研制了一台可以用于低温超导磁体冷却的液氦温区分离型二级脉管制冷机.单独测试第一级最低达到了13.8K,是单级脉管制冷机最低制冷温度新纪录;在40K温度下具有55.9W制冷量,可望在高温超导磁体冷却方面获得广泛应用.使用单压缩机单旋转阀驱动二级脉管,二级最低温度达到了2.6K,在4.2K下有590mW制冷量,同时一级在36.7K有15W的制冷量,满足小型低温超导磁体冷却的要求.  相似文献   

8.
双孔径校正超导磁体是大型强子对撞机亮度升级项目的重要组成部分,在4.2 K低温环境下对该磁体进行励磁及性能测试。为避免磁体在降温过程中产生较大的热应力,要求降温过程中磁体各点最大温差不超过30 K。同时,为节省液氦与降温梯度均匀,特设计了一个铜筒体结构用于该磁体的降温和测试,降温过程分为液氮换热降温和液氦直冷降温两个阶段。实验测试结果表明静态液氦消耗速率为55.571 L/h,电流为407 A失超时液氦总消耗52 L、静态消耗16.116 L、内部泄能消耗22.08 L,即液氦消耗不仅包括测试系统的静态消耗、泄能消耗,还存在液氦溢出损耗。  相似文献   

9.
成功研制了一套制冷机直接冷却式小型超导磁体测试装置,该测试装置特点为:G-M制冷机直接冷却超导磁体;便于拆装的机械结构;设计电流500A;常导电流引线采用无氧铜与黄铜的组合设计结构;实时采集记录温度、电阻、电流电压等数据;人性化的上位机用户操作界面。对比国内外同类装置,测试装置性能达到国际领先水平。  相似文献   

10.
本文报道了导体的冶金与超导性能。导体的临界电流密度J_c(4.2K)达到9.0 ×10_4A/cm_2(10T)、5.8×10~4A/cm_2(12T)、1.7×10_4A/Cm_2(16T);上临界磁场H_(c2)~*(外推)为~22T(4.2K);超导转变温度T_c在17.5—17.9K范围;在室温弯曲直径大于或等于100倍线材导体直径时,J_c无退降。使用先绕制后扩散反应的方法成功地制作出了多芯Nb_3Sn螺管超导磁体,此超导磁体在12.8T的背场下,总场达到15.2T。本研究结果意味着,采用这种导体制作15T的实用高场超导磁体是可能的。  相似文献   

11.
介绍了EBIT(Electron Beam Ion Trap,电子束离子阱)装置零蒸发低温超导磁体系统的研制过程与超导磁体的性能测试结果。该系统中超导磁体由一对上下布置的分离线圈组成,中心最大磁场强度可达4.5T,在中心轴线上±10mm内磁场均匀度优于2×10-4,磁场衰减系数在8h小于1×10-4;同时其低温杜瓦系统采用双冷屏结构,并通过二级G-M制冷机冷却冷屏来降低液氦的蒸发量。超导磁体的性能测试结果表明满足用户基本要求。  相似文献   

12.
P. Khatua  A. K. Majumdar 《Pramana》2009,72(4):629-636
A low-cost apparatus for measuring Hall effect and magnetoresistance is designed and built indigenously. This includes a 6.5 T superconducting magnet and a variable temperature sample holder assembly. A superinsulated liquid helium dewar with a low liquid helium boil-off rate is chosen as the low-temperature bath for doing magnetotransport measurements. A pair of high-T c superconducting leads for energizing the magnet reduces the liquid helium consumption further and makes it economically beneficial, especially for laboratories with limited budget. The performance of the apparatus is tested over a wide range of temperatures (4.2 to 300 K) and fields up to 6.5 T. Reproducible magnetotransport data are obtained with excellent temperature and field stability.   相似文献   

13.
介绍一个用于磁分离研究用的NbTi超导磁体的研制和初步实验。超导磁体的内径为220mm,中心磁场为5T。初步实验结果表明在4.2K下,磁体经过多次失超锻炼后,中心磁场已达到4.66T,基本满足磁分离研究的需要。  相似文献   

14.
介绍了低温超导磁体杜瓦装置的结构设计和传热分析。为了获得有效的超导磁体运行的低温环境,研制了一套采用真空多层绝热、铜辐射冷屏、蛇形排气管结构形式的绝热系统,省去了传统的在内杜瓦外面添加液氮屏的结构,简化了工艺结构,操作方便,绝热效果良好。通过传热理论计算表明,液氦的损耗量小于技术要求的0.9 L/h指标,能够保证超导磁体系统能够在一定的低温环境下长时间的运行。  相似文献   

15.
Acceleration of heavy ions through the superconducting linear accelerator is achieved by superconducting resonators housed in the cryomodules operating at 4.2 K. In the cryomodule, radiation heat flow from the ambient to the 600 kg of cold mass at 4.2 K is thermally screened by the intermediate thermal shield made of copper. The six surfaces of 17 m2 total surface area of the box-shaped thermal shield are cooled in series by the forced flow of liquid nitrogen at 3.2 bar absolute pressure. The boiling temperature of liquid nitrogen at 3.2 bar is 90 K. The steady-state temperatures of the different surfaces of the thermal shield are in the range of 96–115 K at 21.25 L/h flow rate. The steady-state thermal profile of the different surfaces of the thermal shield has also been estimated for different flow rates using a simple analytical technique. The analytical thermal profile of the thermal shield has been correlated with the experimental measurement.  相似文献   

16.
本文研制了一台可以用于低温超导磁体冷却的液氦温区分离型二级脉管制冷机.单独测试第一级最低达到了13.8K,是单级脉管制冷机最低制冷温度新纪录;在40K温度下具有55.9W制冷量,可望在高温超导磁体冷却方面获得广泛应用.使用单压缩机单旋转阀驱动二级脉管,二级最低温度达到了2.6K,在4.2K下有590mW制冷量,同时一级在36.7K有15W的制冷量,满足小型低温超导磁体冷却的要求.  相似文献   

17.
杜晓纪  王为民  兰贤辉  李超 《物理学报》2017,66(24):248401-248401
磁共振成像(magnetic resonance imaging,MRI)是当今世界上最先进的医学影像技术之一,现阶段MRI技术正朝着成像质量更清晰、功能更强大、效率更高、个体化更强的趋势发展.与全身MRI设备相比,专科型MRI设备具有体积小、重量轻、成本低、病人舒适度高、成像质量高、功能更强等优点.但是关节专用超导MRI系统需要长度方向上被严格限制的超导磁体在160 mm直径球域(diameter sphere volume,DSV)内产生高均匀度的磁场.本文综合考虑了超导线用量、中心磁感应强度和成像区磁场不均匀度等因素,使用0-1规划和遗传算法相结合的方法设计了一种非屏蔽型1.5 T关节MRI超导磁体,该磁体的室温孔径为280 mm,总长度为520 mm,液氦量为30 L,载流区最大磁场为5.48 T,5高斯线范围为径向3.2 m、轴向2.6 m,160 mm DSV的磁场不均匀度设计值为22 ppm,考虑加工误差及冷缩因素,磁体加工完成并经过被动匀场后的预估值为60 ppm.经过绕制、固化、组装、焊接等工序,该磁体已制作完成.经过3次锻炼后成功励磁到1.5 T,经过被动匀场后160 mm DSV的磁场不均匀度达到50 ppm,各项指标均达到设计目标.  相似文献   

18.
HTS磁体性能实验研究   总被引:1,自引:0,他引:1  
系统介绍 HTS实验磁体的液氮、液氦实验和固氮浸渍实验 ,获得 78.6~ 4 .2 K不同温度下磁体的伏~安特性曲线和 Ic~ T曲线 ,在很宽的范围内研究了 HTS实验磁体性能。  相似文献   

19.
准确计算分析超导磁体低温系统的漏热量,是评价超导磁体低温绝热性能的重要依据。文中以一台自制的7 T磁共振成像系统(MRI)的超导磁体作为研究对象,对其低温系统进行了详细的漏热计算,分别得到了液氦容器和液氮容器的理论漏热量。将计算结果与实测数据进行比较,分析了磁体实际的低温性能。  相似文献   

20.
超导ECR离子源DECRIS-SC2   总被引:1,自引:0,他引:1  
A new compact version of the"liquid He-free"superconducting Electron Cyclotron Resonance Ion Source,to be used as an injector for the U-400M cyclotron,is presently under construction at the FLNR in collaboration with LHE(JINR).The axial magnetic field of the source is created by the superconducting magnet,and the NdFeB hexapole is used for the radial plasma confinement.The microwave frequency of 14GHz will be used for ECR plasma heating.The DECRIS-SC2 superconducting magnet is designed for the induction of a magnetic field on the axis of the source of up to 1.4T(extraction side)and 1.9T(injection side) at nominal current of 75A.Cooling of the coils is carried out by CM cryocooler with cooling power of 1W at the temperature 4.5K.The basic design features of the superconducting magnet and of the ion source are presented.The main parts of the source are in production.The first beam test of the source is expected in the beginning of 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号