首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 520 毫秒
1.
It is commonly assumed that the burning of ammonium nitrate–aluminum mixtures is much less prone to undergo a transition to explosion and detonation than similar mixtures based on ammonium perchlorate. However, this conclusion has been made for mixtures based on commercial-grade ammonium nitrate with large particles. In this study, the combustion of fine loose-packed mixtures of ammonium nitrate and aluminum in a closed-volume bomb has been examined. It has been shown that fine mixtures (ammonium nitrate with a particle size of less than 40 µm and an ASD-4 aluminum powder with spherical particles with a size of about 4 µm) undergo high-intensity combustion; in experiments with a stoichiometric mixture, explosions are observed. The explosions occur in the initial phase of convective combustion and lead to abrupt pressure pulsations with an amplitude of a few kilobars and to the destruction of the cup in which the sample is placed. The dynamics of development of the explosion has been analyzed in detail using numerical simulation. According to the results of experiments with varied parameters—the degree of dispersion of the ammonium nitrate powders, the aluminum content in the mixture, the length and diameter of the charge, and the level of pressure generated by the combustion of the igniter,—threshold conditions have been determined to separate the following modes: the absence of ignition, layer-by-layer combustion, or convective combustion with a transition into an explosion in experiments with a stoichiometric mixture.  相似文献   

2.
An experimental study of the characteristics of the explosion of mixtures of ammonium perchlorate, aluminum, and nitromethane with a large excess of aluminum (1.45 to 1.66 g/cm3 in density) confined in plastic enclosures and immersed in small elastic-wall reservoirs with water is conducted. It is shown that composite charges, 20 mm in diameter, surrounded by a water layer of thickness 20–30 cm and detonate in a nonideal detonation mode. High-speed cinematography records show the possibility of the intense mixing of the detonation products with the surrounding water and of the burning of excess aluminum particles in a heterogeneous cloud. The time scales of the development of secondary energy release by burning of aluminum particles in water are estimated. The possibility of controlling the characteristics of the pressure waves generated by the explosion, for example, by means of a preliminary bubbling of the water with air near the charge, is demonstrated.  相似文献   

3.
Deflagration-to-detonation transition in binary mixtures of fine ammonium perchlorate (20-μm grains) with submicron ALEX-L aluminum powder (0.2-μm particles) is studied using high-speed photography and pressure recording with quartz crystal sensors. The test mixtures were loaded in thin-walled quartz tubes of inner diameter 10 mm. The charges had a porosity of ~50%. It has been shown that, even under very mild conditions (low-strength shell and a weak source of initiation), the deflagration mode of mixture combustion easily transforms into the detonation mode. The shortest length of the region of transition from deflagration to normal detonation (not more than 30 mm) was observed for a lean mixture, with an aluminum content of ~5%. The mechanism of transition to detonation involves the stage of convective combustion, resulting in the formation of a brightly luminescent crescent-shaped area behind the primary flame front, which, in turn, generates a forward (in the direction of propagation) and a backward wave. The forward wave gives rise to low-speed detonation, which later transforms into normal detonation. The pressure profile within the region of low speed detonation is measured. A comparison with similar experiments in which ALEX-L alu- minum powder was replaced by ASD-4 aluminum (4 μm particles) shows that ALEX-L sensitizes the mixture, resulting in a dramatic reduction of the length of the transition region, making it possible to produce normal detonation in low-strength shells.  相似文献   

4.
There is an obvious contradiction between the statistics of the devastating explosions that take place with the participation of ammonium nitrate and explosive properties of this material determined in standard tests. Pure ammonium nitrate does not burn under normal conditions and has a very low sensitivity to conventional mechanical and thermal stimuli. So far, ammonium nitrate has been detonated only by using high explosives. Causes of accidental explosions involving large masses of ammonium nitrate are likely to be found in a nonconventional behavior of ammonium nitrate. These changes may arise due to different chemical or physical factors, such as those associated with the presence of active additives, crushing of particles, etc., and lead to acceleration of the process at the initial stage of explosion. This work is devoted studying the convective burning and the initial stage of deflagration-to-detonation transition in dry and wet mixtures of ammonium nitrate with various, largely combustible additives. Experiments were conducted on loose-packed charges in a constant-volume bomb and by using the method of the critical bed height with recording pressure-time diagrams by a piezoelectric sensor. Ammonium nitrate of two different types was used: granular and powdered. The fuel additives were charcoal and aluminum powder, whereas the additives inhibiting the combustion of ammonium nitrate were water and monosodium salt of phosphoric acid. In addition, finely dispersed mixture of four components (ammonium nitrate, aluminum, powdered sugar, and TNT in a proportion of 76: 8: 12: 4) was used. The experiments in the constant-volume bomb were supplemented by numerical simulations, which made it possible to obtain a better understanding of the convective burning of the test mixtures and to evaluate the possibility of using a constant-volume bomb to collect quantitative information on the intensity of the combustion of the mixture at the initial stage of the explosion.  相似文献   

5.
The convective burning of pressed aluminum-ammonium perchlorate (AP) charges with a porosity of 7 to 18% was studied. The experiments were performed at pressures of up to 300 MPa in a constant volume bomb provided with means for recording pressure-time diagrams, and in a nozzle setup equipped with a streak photocamera and piezoelectric pressure gauges. In contrast to loose-packed-density charges, which are highly explosive, the burning of pressed aluminum-AP charges propagates without marked acceleration, with a moderate velocity and a relatively slow rise in pressure in the bomb. The basic regularities were studied, and the key factors that determine the characteristics of convective burning, such as the aluminum particle shape (when a finely dispersed spherical-particle powder was replaced by a flaky aluminum powder with the same speciic surface area, the convective burning velocity decreased by more than an order of magnitude), ratio of mixture components, and charge porosity, were identified. The effects of the ammonium perchlorate particle size, an organic additive, and the ignitor mass were also studied. The experimental data were analyzed by invoking numerical modeling. The calculations were performed using a program developed earlier based on a model of the convective burning of aluminum-AP mixtures. The calculation results, which were in qualitative agreement with the available experimental data, made it possible to explain the main experimentally observed regularities. The compositions tested and the results obtained are of considerable interest for designing convective-burning charges for multipurpose pulse engines and thermo-and gas generators with operation durations from a few milliseconds to several tens of milliseconds.  相似文献   

6.
The initiation and propagation of low-velocity detonation in ammonium perchlorate (AP)-aluminum-nitromethane (NM) mixtures with Al: AP ratios of 1: 1 to 2.5: 1 and porosities from 40 (10 wt % HM) to 0% (40 wt % NM) in strong steel shells (in the air) and plastic shells submerged in water are experimentally studied. The optimum contents of the components that provide reliable initiation of steady detonation (at velocities from 2 to 5 km/s) by weak explosive sources in mixtures with an Al: AP ratio of 1: 1 and above are determined. The selected mixtures reproducibly detonate in plastic shells surrounded by a 30-cm-thick layer of water at velocities somewhat lower than in strong steel shells in the air.  相似文献   

7.
The pressure at the front and the pressure impulse of blast waves generated in a cylindrical tube by the expanding products of the nonideal detonation of low-porosity charges prepared by pressing of fine-grained powders of aluminum, Teflon, and RDX were measured. The measured parameters are compared to the same parameters of blast waves produced by the detonation of TNT charges of identical mass. The relative quantities were used to evaluate the effectiveness of blast waves with respect to those generated by TNT. Mixed compositions differing in the shape (brand) of the aluminum powder particles and the ratio between the components at 30% RDX are studied. It is shown that, for the investigated compositions, the pressure at the leading front of the wave exceeds the pressure achieved during TNT explosion on average by 10–30%, almost independently of the distance traveled along the tube in the range from 0.8 to 3.8 m. The dependence of the wave amplitude on the particle shape and aluminum content was weak. In the same range of distances, the relative pulse pressure increases strongly, from 0.5 to 2.1 and higher, mainly due to an increase in the width of the wave. This result is of interest from the point of view of achieving a high pressure impulse of the blast wave in an area remote from the charge. The obtained data suggest that RDX mainly reacts in the detonation wave, with the chemical transformation of Teflon and aluminum in the detonation wave and near-to-charge zone occurring, if at all, to a small extent. On the contrary, as the blast wave front moves through the channel, the burning of aluminum in the fluoride formed during the decomposition of Teflon provides an appreciable support to the blast wave, causing a significant increase in the pressure impulse.  相似文献   

8.
进行了强激光作用铝靶实验,采用纹影照相法,观察爆轰波流场演化过程,分析了爆轰波衰减规律。根据冲击波运动的自相似性,采用点爆炸模型描述了激光作用下爆轰波流场的演化,计算了波阵面速度、压力和温度。结果显示:爆轰波阵面沿迎着激光光源方向较快传播,波阵面形状由最初的半椭球形逐渐向半球形转变,在演化过程中扰动区结构复杂,存在多个密度间断层。在爆轰波开始传播阶段,波阵面的压力和温度较高但下降很快。  相似文献   

9.
Nonideal regimes of deflagration and detonation of black powder   总被引:1,自引:0,他引:1  
The explosive and deflagration properties of black powder differ significantly from those of modern propellants and compositions based on ammonium nitrate or ammonium perchlorate. Possessing a high combustibility, black powder is capable of maintaining stable combustion at high velocities in various shells, be it steel shells or thin-walled plastic tubes, without experiencing deflagration-to-detonation transition. It is extremely difficult to detonate black powder, even using a powerful booster detonator. The results of numerical simulations of a number of key experiments on the convective combustion and shock initiation of black powder described in the literature are presented. The calculations were performed within the framework of a model developed previously for describing the convective combustion of granulated pyroxylin powders, with small modifications being introduced to allow for the specific properties of black powder. The thermophysical properties of the products of combustion and detonation and the parameters of the equation of state of black powder were determined from thermodynamic calculations. The calculation results were found to be in close agreement with the experimental data. The simulation results were used to analyze the regularities of the wave processes in the system and their relation to the properties of black powder and the experimental conditions. It was demonstrated that the effects observed could be explained by a weak dependence of the burning rate of black powder on the pressure.  相似文献   

10.
Experimental data on the detonation velocity of aluminized explosives and the temperature of the material behind the shock wave front in condensed media, including aluminum-oxidizer mixtures were examined. It was demonstrated that the oxidation of aluminum to the highest oxide behind the front of shock and detonation waves is limited by the dissociation of aluminum oxides at temperatures above 3.5 kK.  相似文献   

11.
The Zel’dovich theory predicts the possibility of realization of self-sustained weak detonation in systems with nonmonotonic energy release. The present paper describes experiments aimed at detecting such a regime of detonation in mixtures of phlegmatized RDX with PP-1 and PAP-2 aluminum powders. The mass fraction of aluminum was 20%. To examine the detonation regimes, 70-mm-in-diameter charges of these mixtures were initiated with powerful triangular pressure pulses, which gave rise to attenuating overdriven detonation waves. The pressure profiles were recorded at various distances from the initiation plane (from 10 to 80 mm). Specific features of the time evolution of the detonation wave profile indicative of the existence of a supersonic flow region arising not later than 0.15 μs behind the shock front were revealed. The supersonic character of the flow behind an intermediate C-J plane is an inherent characteristic of self-sustained weak detonation; i.e., direct experimental evidence for the existence of weak detonation in RDX-aluminum mixtures was obtained.  相似文献   

12.
The unsteady, reactive Navier-Stokes equations with a detailed chemical mechanism of 11 species and 27 steps were employed to simulate the mixing, flame acceleration and deflagration-to-detonation transition (DDT) triggered by transverse jet obstacles. Results show that multiple transverse jet obstacles ejecting into the chamber can be used to activate DDT. But the occurrence of DDT is tremendously difficult in a non-uniform supersonic mixture so that it required several groups of transverse jets with increasing stagnation pressure. The jets introduce flow turbulence and produce oblique and bow shock waves even in an inhomogeneous supersonic mixture. The DDT is enhanced by multiple explosion points that are generated by the intense shock wave focusing of the leading flame front. It is found that the partial detonation front decouples into shock and flame, which is mainly caused by the fuel deficiency, nevertheless the decoupled shock wave is strong enough to reignite the mixture to detonation conditions. The resulting transverse wave leads to further mixing and burning of the downstream non-equilibrium chemical reaction, resulting in a high combustion temperature and intense flow instabilities. Additionally, the longitudinal and transverse gradients of the non-uniform supersonic mixture induce highly dynamic behaviors with sudden propagation speed increase and detonation front instabilities.  相似文献   

13.
Experimental studies of the combustion of mixtures of micron-sized flaky aluminum powder with unthickened water in different conditions at atmospheric and high pressure in nitrogen and argon are performed. The density and composition of the mixture are varied. The regularities of the combustion have been established. A filtration wave of hot hydrogen ahead of the combustion front in samples with high porosity has been revealed. For the combustion under a nitrogen atmosphere, the pressure exponent in the burning rate law is close to 0.47 in a wide range of pressures. For the combustion under an argon atmosphere at pressures above 50 atm, the pressure exponent becomes zero or negative. Aluminum powder is demonstrated to be able to burn under conditions of a separated charge, where the fuel (aluminum) and oxidizer (water) are separated by a thin partition or brought in direct contact. The fast convective burning of aluminum-water mixtures in a semiclosed volume is discovered.  相似文献   

14.
Two dimensional numerical simulation of the structure of gaseous detonation is investigated by utilizing the single step Arrhenius kinetic reaction mechanism in both high and low activation energy mixtures, characterized by their irregular and regular detonation structure, respectively. All the computations are performed on a small Beowulf cluster with six nodes. The dependency of the structure on the grid resolution is performed and it is found that, resolution of more than 300 cells per hrl is required to demonstrate the role of hydrodynamic instabilities, (KH and RM instabilities) in detonation propagation in irregular structures, while due to the absence of fine-scale structures, resolution of 50 cells per hrl, gives the physical structure of detonation with regular structures. Results show that the transverse waves in irregular structure are significantly stronger than the transverse wave in regular structure detonation, which can enhance the burning rate of the unburned pockets behind the shock front. Results for resolution of 600 cells per hrl illustrate that, in addition to the primary mode, the interaction of large vortices with the shock front provides secondary modes in the structure which leads to the irregularity of the structure in high activation energy mixture. In contrast with the results obtained for regular structure, which no unburned gas pockets and vortices observed behind the front, the results for irregular structure reveal that most portions of the gases, escape from shock compression and create large unburned gas pockets behind the both weak section of the Mach stem and the incident wave, which will burn eventually by the turbulent mixing due to the vortices associated with hydrodynamic instabilities. Therefore, the ignition mechanism in irregular structure is due to the both shock compression and by turbulent mixing associated with hydrodynamic instabilities, while the shock compression yields the ignition mechanism in regular structure detonation.  相似文献   

15.
We present a new phenomenology for burn propagation inside a thermal explosion based on dynamic radiography. Radiographic images were obtained of an aluminum cased solid cylindrical sample of a plastic bonded formulation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The phenomenology observed is ignition followed by cracking in the solid accompanied by the propagation of a radially symmetric front of increasing proton transmission. This is followed by a further increase in transmission through the sample, ending after approximately 100 micros. We show that these processes are consistent with the propagation of a convective burn front followed by consumption of the remaining solid by conductive particle burning.  相似文献   

16.
The burning of a stoichiometric mixture of aluminum (PAP-2 powder) with water in a constant-volume bomb is studied. It is shown that, depending on the charge diameter and igniter-generated pressure, three situations can arise: the mixture does not burn, burns slowly (in the layer-by-layer mode), or burns rapidly in the convective mode. The characteristics of the rapid burning, such as the effect of the igniter-generated burning, charge length, and initial charge density, are in general similar to those of the convective burning of mixtures of aluminum powder with an oxidizing agent (AP or PA), described in the literature. The difference lies in the fact that, due to a relatively low water activity as an oxidant, the convective burning of aluminum-water mixtures is harder to initiate, and it proceeds at a much lower velocity.  相似文献   

17.
It is well known that low-velocity detonation excited by the explosion of a thin layer of a plastic explosive within charges of grained pyroxylin powder is propagated with a velocity that is practically constant along the charge. However, it varies depending on the power of the initiating pulse. The present paper is devoted to the elucidation of the mechanism of this unusual feature of detonation process. Experiments were carried out on charges of VTM grade grained single-channel powder with different initial density and were added by numerical modeling. It is shown that the property studied is the consequence of the relatively low intensity of the chemical transformation and the limited charge length (120 mm in the experiment and calculations). The reaction zone of the detonation wave has no time to form completely under these conditions, and the development process is interrupted at a stage when the wave characteristics change actively. The wave evolution was distinctly revealed on pressure profiles; however, the front trajectory, if excluding the initiation area, has an almost linear form. The wave velocity, close to constant, corresponds to this. To form a stationary wave with characteristics that are not dependent on the initiation conditions in a range corresponding to lowvelocity detonation mode, charges with much greater length are necessary. As regards the mechanism of the excitation of chemical transformation in the wave front, as numerical modeling showed, high-porosity charges operate by the gas-phase mechanism (the compression and heating in the high-speed gas flow in pores). In the case of compacted charges with a porosity of 0.2 and lower, heating and ignition of the powder occur by the solid-phase mechanism (because of dissipation at plastic deformations of the porous layer). Details of both mechanisms are considered.  相似文献   

18.
Experiments in a constant-volume reactor and in a model rocket combustor demonstrated the possibility of convective burning of mixtures of water with PAP-2 flaky aluminum powder with the formation of alumina and hydrogen. It was shown that the porosity of the mixture is an important factor determining the mode of its burning. The burning occurred at a pressure of several hundred atmospheres in the convective mode.  相似文献   

19.
高密实含能颗粒床对流燃烧过程的实验研究张小兵,金志明,袁亚雄(南京理工大学动力学院南京210094)关键词对流燃烧;含能颗粒床;实验研究1引言在高能燃料火箭推进系统和粒状火药炮膛内,火药颗粒燃烧的热量传递机理是强迫对流。当装填密度高到一定程度时,火焰...  相似文献   

20.
Understanding the causes and mechanisms of large explosions, especially dust explosions, is essential for minimising devastating hazards in many industrial processes. It is known that unconfined dust explosions begin as primary (turbulent) deflagrations followed by a devastating secondary explosion. The secondary explosion may propagate with a speed of up to 1000 m/s producing overpressures of over 8–10 atm, which is comparable with overpressures produced in detonation. Since detonation is the only established theory that allows rapid burning producing a high pressure that can be sustained in open areas, the generally accepted view was that the mechanism explaining the high rate of combustion in dust explosions is deflagration-to-detonation transition. In the present work we propose a theoretical substantiation of an alternative mechanism explaining the origin of the secondary explosion producing high speeds of combustion and high overpressures in unconfined dust explosions. We show that the clustering of dust particles in a turbulent flow ahead of the advancing flame front gives rise to a significant increase of the thermal radiation absorption length. This effect ensures that clusters of dust particles are exposed to and heated by radiation from hot combustion products of dust explosions for a sufficiently long time to become multi-point ignition kernels in a large volume ahead of the advancing flame. The ignition times of a fuel–air mixture caused by radiatively heated clusters of particles is considerably reduced compared with the ignition time caused by an isolated particle. Radiation-induced multipoint ignitions of a large volume of fuel–air ahead of the primary flame efficiently increase the total flame area, giving rise to the secondary explosion, which results in the high rates of combustion and overpressures required to account for the observed level of overpressures and damage in unconfined dust explosions, such as for example the 2005 Buncefield explosion and several vapour cloud explosions of severity similar to that of the Buncefield incident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号