首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
In this paper, a new simulation approach for solving the mixed train scheduling problem on the high-speed double-track rail line is presented. Based on the discrete-time movement model, we propose control strategies for mixed train movement with different speeds on a high-speed double-track rail line, including braking strategy, priority rule, travelling strategy, and departing rule. A new detailed algorithm is also presented based on the proposed control strategies for mixed train movement. Moreover, we analyze the dynamic properties of rail traffic flow on a high-speed rail line. Using our proposed method, we can effectively simulate the mixed train schedule on a rail line. The numerical results demonstrate that an appropriate decrease of the departure interval can enhance the capacity, and a suitable increase of the distance between two adjacent stations can enhance the average speed. Meanwhile, the capacity and the average speed will be increased by appropriately enhancing the ratio of faster train number to slower train number from 1.  相似文献   

2.
In this paper, we proposed a novel optical switching method based on optical burst switching (OBS), we call it variable time-period optical switching (VTPOS). It can both support circuit services and other immerged packet services. It has better usability of bandwidth, shorter offset and latency time than others of unidirectional transport signaling mechanisms for OBS. It supports deflection switching for improve blocking performance without the need of schedule buffer. It introduces a time pointer and phase indicator that made synchronous more precisely and requires less guard time, it also classifies the different services classes with a relative QoS model.  相似文献   

3.
A sawtooth-shaped electron blocking layer is proposed to improve the performance of light-emitting diodes (LEDs). The energy band diagram, the electrostatic field in the quantum well, the carrier concentration, the electron leakage, and the internal quantum efficiency are systematically studied. The simulation results show that the LED with a sawtooth-shaped electron blocking layer possesses higher output power and a smaller efficiency droop than the LED with a conventional A1GaN electron blocking layer, which is because the electron confinement is enhanced and the hole injection efficiency is improved by the appropriately modified electron blocking layer energy band.  相似文献   

4.
The characteristics of a blue light-emitting diode (LED) with a p-InA1GaN hole injection layer (HIL) is analyzed numerically. The simulation results indicate that the newly designed structure presents superior optical and electrical performance such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-InA1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency.  相似文献   

5.
The characteristics of a blue light-emitting diode(LED)with a p-InAlGaN hole injection layer(HIL)is analyzed numerically.The simulation results indicate that the newly designed structure presents superior optical and electrical performance such as an increase in light output power,a reduction in current leakage and alleviation of efficiency droop.These improvements can be attributed to the p-InAlGaN serving as hole injection layers,which can alleviate the band bending induced by the polarization field,thereby improving both the hole injection efficiency and the electron blocking efficiency.  相似文献   

6.
InGaN-based light-emitting diodes with p-GaN and p-AlGaN hole injection layers are numerically studied using the APSYS simulation software.The simulation results indicate that light-emitting diodes with p-AlGaN hole injection layers show superior optical and electrical performance,such as an increase in light output power,a reduction in current leakage and alleviation of efficiency droop.These improvements can be attributed to the p-AlGaN serving as hole injection layers,which can alleviate the band bending induced by the polarization field,thereby improving both the hole injection efficiency and the electron blocking efficiency.  相似文献   

7.
The limitations in electronics in arithmetic, algebraic & logic processing are well known. Very high speed performance (above GHz) are not expected at all in conventional electronic mechanism. To achieve high speed performance we may think on the introduction of optics instead of electronics for information, processing and computing. Non-linear optical material is a successful candidate in this regard to play a major role in the optically controlled switching systems and therefore in all-optical parallel computation these materials can show a very good potential aspect. In this paper, we have proposed a new method of an optical half adder as well as full adder circuit for binary addition using non-linear and linear optical materials.  相似文献   

8.
In this paper, we present the combination of drain field plate(FP) and Schottky drain to improve the reverse blocking capability, and investigate the reverse blocking enhancement of drain FP in Schottky-drain AlGaN/GaN high-electron mobility transistors(HEMTs). Drain FP and gate FP were employed in a two-dimensional simulation to improve the reverse blocking voltage(VRB) and the forward blocking voltage(VFB). The drain-FP length, the gate-FP length and the passivation layer thickness were optimized. VRBand VFBwere improved from-67 V and 134 V to-653 V and 868 V respectively after optimization. Simulation results suggest that the combination of drain FP and Schottky drain can enhance the reverse blocking capability significantly.  相似文献   

9.
Physics experiments that generate large amounts of data need to be able to share it with researchers around the world .High performance grids facilitate the distribution of such data to geographically remote places.Dynamic replication can be used as a technique to reduce bandwidth consumption and access latency in accessuing these huge amounts of data.We describe a simulation framework that we have developed to model a grid scenario,which enables comparative studies of alternative dynamic replication strategies.We present preliminary results obtained with this simulator,in which we evaluate the performance of six different replication strategies for three different kinds of access patterns.The simulation results show that the best strategy has significant savings in latency and bandwidth consumption if the access patterns contain a moderate amount of gerographical locality.  相似文献   

10.
Optical packet switching (OPS) technology can rapidly deliver the enormous network bandwidth and offer high-speed data rate and format transparency. In this paper we propose a novel architecture using all-optical tunable wavelength converters (TWCs) and fiber delay-lines (FDLs) to address the contention problem for OPS in wavelength and time domains. This architecture improves packet switching speed but significantly decreases the number of optical switches comparing with existing architectures. A simulation is also conducted to evaluate the performance of the architecture. The simulation results show that the packet loss probability of this architecture is lower than general architectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号