首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A novel exploration of nonminimally coupled scalar field cosmology is proposedin the framework of spatially flat Friedmann—Robertson—Walker spaces forarbitrary scalar field potentials V() and values of the nonminimal couplingconstant . This approach is self-consistent in the sense that the equation of stateof the scalar field is not prescribed a priori, but is rather deduced together withthe solution of the field equations. The role of nonminimal coupling appears tobe essential. A dimensional reduction of the system of differential equations leadsto the result that chaos is absent in the dynamics of a spatially flat FRW universewith a single scalar field. The topology of the phase space is studied and revealsan unexpected involved structure: according to the form of the potential V()and the value of the nonminimal coupling constant , dynamically forbiddenregions may exist. Their boundaries play an important role in the topologicalorganization of the phase space of the dynamical system. New exact solutionssharing a universal character are presented; one of them describes a nonsingularuniverse that exhibits a graceful exit from, and entry into, inflation. This behaviordoes not require the presence of the cosmological constant. The relevance of thissolution and of the topological structure of the phase space with respect to anemergence of the universe from a primordial Minkowski vacuum, in an extendedsemiclassical context, is shown.  相似文献   

2.
Considering a Robertson-Walker line element, exact solutions are obtained for radiation-filled cosmological differential equations of Brans-Dicke theory with the assumption that the radius of curvatureQ of the universe varies directly as thenth power of time. The solution is found to be valid for closed space only and the coupling constantw of the scalar tensor theory is necessarily negative. The radius of curvature of increases linearly with respect to the age of the universe, while the gravitational constantk varies directly as the square of the radius of the universe. The solution obtained is in contradiction to Dirac's hypothesis, in which the gravitational constant should decrease with time in an expanding universe.  相似文献   

3.
The dynamics of a ring of masses including dissipative forces (passive or active friction) and Toda interactions between the masses is investigated. The characteristic attractor structure and the influence of noise by coupling to a heat bath are studied. The system may be driven from the thermodynamic equilibrium to far from equilibrium states by including negative friction. We show, that over-critical pumping with free energy may lead to a partition of the phase space into attractor regions corresponding to several types of collective motions including uniform rotations, one- and multiple soliton-like excitations and relative oscillations. The distribution functions in the phase space and the correlation functions of the forces and the spectra of nonlinear excitations are calculated. We show that a finite-size Toda ring with weak thermal coupling develops at intermediate temperatures a broadband colored noise spectrum with an 1/f tail at low frequencies.  相似文献   

4.
We study models where the gauge coupling constants, masses and the gravitational constant are functions of some conserved charge in the universe, and furthermore a cosmological constant that depends on the total charge of the universe. We first consider the standard Dirac action, but where the mass and the electromagnetic coupling constant are a function of the charge in the universe and afterwards extend this to curved spacetime and consider gauge coupling constants, the gravitational constant and the mass as a function of the charge of the universe, which represent a sort of Mach principle for all the constants of nature. In the flat space formulation, the formalism is not manifestly Lorentz invariant, however Lorentz invariance can be restored by performing a phase transformation of the Dirac field. One interesting model of this type is one where the action is invariant under rescalings of the Dirac wave function. In the curved space time formulation, there is the additional feature that some of the equations of motion break the general coordinate invariance also, but in a way that can be understood as a coordinate choice only, so the equations are still of the General Relativity type, but with a certain natural coordinate choice, where there is no current of the charge. We have generalized what we have done and also constructed a cosmological constant which depends on the total charge of the universe. We discuss how these ideas work when the space where the charges live is finite. If we were to use some only approximately conserved charge for these constructions, like say baryon number (in the context of the standard model), this will lead to corresponding violations of Lorentz symmetry in the early universe for example. We also briefly discuss another non-local formulations where the coupling constants are functions of the Pontryagin index of some non-abelian gauge field configurations. The construction of charge dependent contributions can also be motivated from the structure of the “infra-red counter terms” needed to cancel infra red divergences for example in three dimensions.  相似文献   

5.
We develop a stochastic formulation of cosmology in the early universe, after considering the scatter in the redshift-apparent magnitude diagram in the early epochs as an observational evidence for the non-deterministic evolution of early universe. We consider the stochastic evolution of density parameter in the early universe after the inflationary phase qualitatively, under the assumption of fluctuating w factor in the equation of state, in the Fokker-Planck formalism. Since the scale factor for the universe depends on the energy density, from the coupled Friedmann equations we calculated the two variable probability distribution function assuming a flat space geometry.  相似文献   

6.
Recently the background independent nonperturbative quantization has been extended to various theories of gravity and the corresponding quantum effective cosmology has been derived, which provides us with necessary avenue to explore the pre-inflationary dynamics. Brans-Dicke (BD) loop quantum cosmology (LQC) is one of such theories whose effective background dynamics is considered in this article. Starting with a quantum bounce, we explore the pre-inflationary dynamics of a universe sourced by a scalar field with the Starobinsky potential in BD-LQC. Our study is based on the idea that though Einstein's and Jordan's frames are classically equivalent up to a conformal transformation in BD theory, this is no longer true after quantization. Taking the Jordan frame as the physical one we explore in detail the bouncing scenario which is followed by a phase of a slow roll inflation. The three phases of the evolution of the universe, namely, bouncing, transition from quantum bounce to classical universe, and the slow roll inflation, are noted for an initially kinetic energy dominated bounce. In addition, to be consistent with observations, we also identify the allowed phase space of initial conditions that would produce at least 60 e-folds of expansion during the slow roll inflation.  相似文献   

7.
A bounce universe model with a scale-invariant and stable spectrum of primordial density perturbations was constructed using a consistent truncation of the D-brane dynamics from Type IIB string theory. A coupling was introduced between the tachyon field and the adjoint Higgs field on the D3-branes to lock the tachyon at the top of its potential hill and to model the bounce process,which is known as the Coupled Scalar and Tachyon Bounce(CSTB) Universe. The CSTB model has been shown to be ghost free,and it fulfils the null energy condition; in addition, it can also solve the Big Bang cosmic singularity problem. In this paper we conduct an extensive follow-up study of the parameter space of the CSTB model. In particular we are interested in the parameter values that can produce a single bounce to arrive at a radiation-dominated universe. We further establish that the CSTB universe is a viable alternative to inflation, as it can naturally produce a sufficient number of e-foldings in the locked inflation epoch and in the post-bounce expansion to overcome the four fundamental limitations of the Big Bang cosmology, which are flatness, horizon,homogeneity and singularity, resulting in a universe of the current size.  相似文献   

8.
We analyze the dynamics of the FRW models with global rotation in terms of dynamical system methods. We reduce the dynamics of these models to the FRW models with some fictitious fluid which scales like radiation matter. This fluid mimics dynamical effects of global rotation. The significance of the global rotation of the Universe for the resolution of the acceleration and horizon problems in cosmology is investigated. It is found that the dynamics of the Universe can be reduced to the two-dimensional Hamiltonian dynamical system. Then the construction of the Hamiltonian allows for full classification of evolution paths. On the phase portraits we find the domains of cosmic acceleration for the globally rotating universe as well as the trajectories for which the horizon problem is solved. We show that the FRW models with global rotation are structurally stable. This proves that the universe acceleration is due to the global rotation. It is also shown how global rotation gives a natural explanation of the empirical relation between angular momentum for clusters and superclusters of galaxies. The relation J ~ M2 is obtained as a consequence of self similarity invariance of the dynamics of the FRW model with global rotation. In derivation of this relation we use the Lie group of symmetry analysis of differential equation.  相似文献   

9.
In this paper I will describe some results that have been recently obtained in the study of random Euclidean matrices, i.e. matrices that are functions of random points in Euclidean space. In the case of translation invariant matrices one generically finds a phase transition between a phonon phase and a saddle phase. If we apply these considerations to the study of the Hessian of the Hamiltonian of the particles of a fluid, we find that this phonon-saddle transition corresponds to the dynamical phase transition in glasses, that has been studied in the framework of the mode coupling approximation. The boson peak observed in glasses at low temperature is a remanent of this transition. Received 4 May 2002  相似文献   

10.
We study the locally conformal invariant Weyl theory of gravitation and introduce a conformally coupled scalar field. Einstein gravity is induced by spontaneous breaking of the local conformal symmetry in an effective long range approximation. The effective potential for the scalar field is calculated at the one-loop level up to curvature squared in order in an arbitrary curved background. The non-zero vacuum expectation value of the scalar field induces the dimensional Einstein's gravitational coupling constant stably in case ofR > 0. ForR < 0, the phase transition occurs from the symmetric phase to the broken phase as the curvature decreases. This theory may be an attractive candidate for the primordial inflationary universe scenario.  相似文献   

11.
The present paper envisages a spatially homogeneous and anisotropic Bianchi II massive string cosmological models with time-decaying Λ term in general relativity. By using the variation law of Hubble’s parameter, the Einstein’s field equations have been solved for two general cases. The first case involving a power law solution describes the dynamics of universe from big bang to present epoch while the second case admit an exponential solution seems reasonable to project dynamics of future universe. We observed that massive strings dominate in early universe and eventually disappear at late time, which is consistent with the current astronomical observations. It has been found that the cosmological constant (Λ) is a decreasing function of time and it approaches to small positive value at sufficiently large time. The thermodynamic properties of anisotropic Bianchi II universe are studied and also the absolute temperature and entropy distribution are given explicitly. The relations between thermodynamic parameters and cosmological constant Λ has been established. Physical behavior of the derived model is elaborated in detail.  相似文献   

12.
Subtractive methods (N-wave and adiabatic) which are applicable to the calculation of the energy-momentum tensor of quantum fields in curved space-time are in need of a foundation in terms of renormalizations. In the example of a scalar field in an anisotropic universe of Bianchi type I it is shown that the Pauli-Villars scheme, in which the renormalization is in fact realized separately in each mode, provides such a foundation. The technical difficulty obstructing the explicit regularization of divergent integrals in momentum space is shown. We calculate the polarization of the vacuum of a scalar field with arbitrary coupling to the curvature in a weakly anisotropic universe.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 93–98, July, 1986.  相似文献   

13.
In a space of FRLW models, filled with a single fluid such that its energy-momentum tensor satisfies standard energy conditions and the dynamics of the universe is described by a second order differential equation,the existence of particle horizons is a generic property. To remove particle horizons one must invest nearly as much as to remove them together with the initial singularity.  相似文献   

14.
We introduce a scenario in which the breakdown of conformal symmetry is responsible for the acceleration of universe in the matter dominant era. In this regard, we consider a self interacting scalar field non-minimally coupled to the Ricci scalar and the trace of energy-momentum tensor. For a traceless energy-momentum tensor in radiation dominant era, the coupling to matter vanishes and we are left with a conformal invariant gravitational action of Deser, where the universe may experience a decelerating phase in agreement with observations. In matter dominant era, the coupling to matter no longer vanishes, the conformal symmetry is broken down, and the matter inevitably becomes pressureless. The corresponding field equations are obtained and it is shown that the universe may have an accelerating phase in this era, provided that the value of self interaction coupling constant satisfies an specific lower bound. Moreover, we provide a reasonable solution to the coincidence problem.  相似文献   

15.
The cosmological evolution of an interacting scalar-field model in which the scalar field interacts with dark matter, radiation, and baryons via Lorentz violation is investigated. We propose a model of interaction through the effective coupling, [`(b)]\bar{\beta} . Using dynamical system analysis, we study the linear dynamics of an interacting model and show that the dynamics of critical points are completely controlled by two parameters. Some results can be mentioned as follows. Firstly, the sequence of radiation, the dark matter, and the scalar-field dark energy exist and baryons are subdominant. Secondly, the model also allows for the possibility of having a universe in the phantom phase with constant potential. Thirdly, the effective gravitational constant varies with respect to time through [`(b)]\bar{\beta} . In particular, we consider the simple case where [`(b)]\bar{\beta} has a quadratic form and has a good agreement with the modified ΛCDM and quintessence models. Finally, we also calculate the first post-Newtonian parameters for our model.  相似文献   

16.
We analyze an oscillating universe model in brane world cenario. The oscillating universe cycles through a series of expansions and contractions and its energy density is dominated by dust matter at early-time expansion phase and by phantom dark energy at late-time expansion phase. We find that the period of the oscillating universe is not sensitive to the tension of the brane, but sensitive to the equation-of-state parameter w of the phantom dark energy, and the ratio of the period to the current Hubble age approximately varies from 3 to 9 when the parameter w changes from −1.4 to −1.1. The fraction of time that the oscillating universe spends in the coincidence state is also comparable to the period of the oscillating universe. This result indicates that the coincidence problem can be significantly ameliorated in the oscillating universe without singularity.  相似文献   

17.
This paper deals with the propagation of the gravitational waves in the Poincaré patch of the 5-dimensional Anti-de Sitter universe. We construct a large family of unitary dynamics with respect to some high order energies that are conserved and positive. These dynamics are associated with asymptotic conditions on the conformal time-like boundary of the universe. This result does not contradict the statement of Breitenlohner-Freedman that the hamiltonian is essentially self-adjoint in L 2 and thus accordingly the dynamics is uniquely determined. The key point is the introduction of a new Hilbert functional framework that contains the massless graviton which is not normalizable in L 2. Then the hamiltonian is not essentially self-adjoint in this new space and possesses a lot of different positive self-adjoint extensions. These dynamics satisfy a holographic principle: there exists a renormalized boundary value which completely characterizes the whole field in the bulk.  相似文献   

18.
If our universe underwent inflation, its entropy during the inflationary phase was substantially lower than it is today. Because a low-entropy state is less likely to be chosen randomly than a high-entropy one, inflation is unlikely to arise through randomly-chosen initial conditions. To resolve this puzzle, we examine the notion of a natural state for the universe, and argue that it is a nearly-empty spacetime. If empty space has a small vacuum energy, however, inflation can begin spontaneously in this background. This scenario explains why a universe like ours is likely to have begun via a period of inflation, and also provides an origin for the cosmological arrow of time. This work was supported in part by the U.S. Dept. of Energy, the National Science Foundation, the NDSEG Fellowship, and the David and Lucile Packard Foundation. Second Award in the 2005 Essay Competition of the Gravity Research Foundation. - Ed.  相似文献   

19.
We consider the flat anisotropic Bianchi I braneworld model of the universe within the framework of low energy effective string action in four-dimensions including the leading order α′ terms, two-scalar fields, their interaction, non-minimal coupling of the dark-energy scalar field to the scalar curvature and effective cosmological constant. Backward (high energy limit) and forward (low energy limit) in time analytic solutions are derived and late-time accelerated expansion was found. It is shown that during the transition from high energy limit to the low energy limit, the topology of the universe is changing in time: we have a transition from a (1 + 3) FRW homogenous and isotropic spacetime dominated by radiation to a (1 + 2) spacetime sheet dominated by phantom energy while the third spatial dimension is contracted in time. We have also found that dark matter and dark energy may be unified at early epoch in the form of radiation fluids while the late-time dynamics is governed by phantom energy and dark energy. Many interesting features are revealed.  相似文献   

20.
The most classic approach to the dynamics of an n-dimensional mechanical system constrained by d independent holonomic constraints is to pick explicitly a new set of (nd) curvilinear coordinatesparametrizingthe manifold of configurations satisfying the constraints, and to compute the Lagrangian generating the unconstrained dynamics in these (nd) configuration coordinates. Starting from this Lagrangian an unconstrained Hamiltonian H(q,p) on 2(nd) dimensional phase space can then typically be defined in the standard way via a Legendre transform. Furthermore, if the system is in contact with a heat bath, the associated Langevin and Fokker-Planck equations can be introduced. Provided that an appropriate fluctuation-dissipation condition is satisfied, there will be a canonical equilibrium distribution of the Gibbs form exp(−βH) with respect to the flat measure dqdp in these 2(nd) dimensional curvilinear phase space coordinates. The existence of (nd) coordinates satisfying the constraints is often guaranteed locally by an implicit function theorem. Nevertheless in many examples these coordinates cannot be constructed in any tractable form, even locally, so that other approaches are of interest. In ambient space formulations the dynamics are defined in the full original n-dimensional configuration space, and associated 2n-dimensional phase space, with some version of Lagrange multipliers introduced so that the 2(nd) dimensional sub-manifold of phase space implied by the holonomic constraints and their time derivative, is invariant under the dynamics. In this article we review ambient space formulations, and explain that for constrained dynamics there is in fact considerable freedom in how a Hamiltonian form of the dynamics can be constructed. We then discuss and contrast the Langevin and Fokker-Planck equations and their equilibrium distributions for the different forms of ambient space dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号