首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
实验研究了微细圆管内凝结换热特性,实验中采用四种不锈钢管,其内径范围为289-997μm。基于实验结果, 分析了换热温差、蒸汽进口雷诺数Rein和管径对管内膜状凝结换热系数的影响,发现温差对管内膜状凝结换热的影响很小, Nu随蒸汽进口雷诺数Rein增加而增大,随管径减小而降低,而对流换热系数随管径减小而显著增大。  相似文献   

2.
采用VOF方法,对梯形微通道内不可压缩气液两相流动进行了数值模拟研究,详细分析了气泡形成过程,以及当量直径、截面形状、液体表面张力和粘度等对气泡液柱形成过程和长度的影响,拟合出微通道气泡液柱长度计算公式。结果表明:气泡液柱的长度受表观气速和表观液速的影响较大;表面张力对气泡尺寸的影响较小,当液体粘度增加为水粘度的10倍时,形成的气泡形状不规则。增大表面张力,形成气泡的时间增加;增大粘度,形成气泡的时间减小。  相似文献   

3.
在横截面积不变、入口流速相等的条件下,通过数值模拟的方法,分析了在不同宽高比时矩形微通道内流体流动特性的变化规律。结果表明,矩形微通道的入口段长度随水力直径的减小先增加,再急剧降低,而后逐渐减小,而且水力直径越小,中心线流速缓慢增加至主流速度的长度越长;此外,矩形微通道的沿程阻力系数与水力直径的1. 04次方成反比例关系,而泊肃叶数Po与水力直径的2. 4次方成正比,且最大值为95. 19.  相似文献   

4.
为研究细通道内气液段塞流的流体力学性质,对细通道内空气和水两相段塞流进行了数值模拟。以直径为1.6 mm的错流T型管为模型,使用计算流体力学(CFD)研究了气液流速、液相粘度和表面张力以及入口结构对段塞形成的影响,确定了气塞长度与两相流率、液相粘度和表面张力有关。气塞长度随分散相流率和表面张力的增大而增大,随连续相流率增大而减小;液相粘度在低液速时对段塞长度有较大的影响;确定了段塞形成的挤压和剪切关联式。  相似文献   

5.
利用高速CCD成像技术,本文研究了梯形横截面微通道内的气泡喷射流动.通过调节同向流动时空气和水流量,研究了气泡形成的大小和频率等变化特性;以及微通道内的流型变化.实验结果表明,气泡喷射频率随空气流量的增加而增大,同时随水流量的增加而上升,且上升幅度渐趋平缓.  相似文献   

6.
廖旭  丛红璐  姜道来  任学藻 《物理学报》2010,59(8):5508-5513
利用相干态正交化展开方法,在非旋波近似下研究了原子的布居反转随时间的演化情况.数值计算的结果表明了,场频以及耦合强度不随时间变化时,布居反转的周期随着平均光子数的增加而增大,虚光子效应引起的快速振荡随耦合强度的增大而逐渐增大.当光场随时间做正弦调制时,光场的振幅α和角频率β对布居反转的演化都会产生很大影响.光场随时间做方波形式变化,会导致原子布居反转出现新的塌缩回复现象.无论是正弦调制还是方波调制,都会对由虚光子效应产生的小锯齿状的振荡产生影响. 关键词: 相干态正交化展开 非旋波近似 原子布居数反转  相似文献   

7.
采用CFD方法对水在矩形光滑微通道内的流动和传热特性进行了数值模拟.计算结果表明微通道的长径比、当量直径、高宽比和孔隙率都对其流动和传热有着不同程度的影响.在保持长径比大于70而使流动的入口效应可忽略的前提下,分别模拟了当量直径,高宽比和孔隙率对微通道流动和传热的影响,得到了各种工况下的流动和传热规律.  相似文献   

8.
研制了一种简单实用的实验装置,用于振荡流回热器压降特性的研究。在活塞提供的振荡流作用下,研究了回热器孔隙率、长度、堆叠方式及温差对回热器动态压降的影响。实验结果显示,丝网型回热器的动态压降与回热器的长度及孔隙率几乎呈线性关系,而在相同条件下与丝网的堆叠方式无明显的关联;此外,回热器的动态压降随回热器两端温差的增加而增大,与温差变化方向无明显联系。本文研究的目的是为斯特林回热器的设计提供相关的实验数据。  相似文献   

9.
液氢瓶是氢能源汽车首选的储氢方式。基于线性屈曲模拟稳定性分析和极限承载能力分析方法,设计了18种规格的双壁层结构液氢瓶,并探讨了内容器直径、材料和长径比的变化对质量储氢密度、体积储氢密度的影响规律。结果表明:长度一定时,储氢密度随内容器长径比增大而减少;内/外容器采用薄壁铝合金/碳纤维缠绕复合材料能提高液氢瓶储氢密度。  相似文献   

10.
在非均匀光纤中,基于带有分布色散,自相位调制和自陡峭的变系数修正非线性薛定谔方程(VcMNLSE)及其两种暗孤子解,详细讨论了不同形式的拉曼增益对暗孤子解传输特性的影响。结果表明:周期的正弦函数拉曼增益会使两种暗孤子解的背景波产生周期性振荡,并且振荡周期和幅度均随正弦函数的参数变化而变化;双曲正弦函数和指数函数的拉曼增益将会使两种暗孤子解的背景波功率升高;正切函数的拉曼增益会使两种暗孤子解的背景波产生阶跃性变化,且周期振荡暗孤子解会在传输过程中发生分裂。  相似文献   

11.
使用非平衡分子动力学模拟方法分析了微通道脉冲管(MPT)中由正弦速度活塞提供驱动力时He气交替振荡的微观动力学过程,并对MPT的冷却机制进行了分析.结果表明,MPT的压缩和膨胀过程之间存在一个交替的振荡过程,两个过程具有不对称的属性分布,膨胀过程具有比压缩过程更大的轴向压力梯度.当充气压力较低时,循环时间对冷端温度的影响很小,但是当充气压力高于20 bar时,冷端温度对时间较为敏感,随着时间的减少,冷端温度进一步降低,而冷端瞬时平均温度随着充气压力的增加而增加.另外,压比随着时间的减少而增加,并且明显不受充气压力的影响,但它会在MPT的轴向上产生较大的温度梯度.综上所述,在热端使用不同形式的换热器和调相元件会释放或回收额外的声功率.固定工作模式和尺寸参数的MPT具有最佳频率,可以在冷端获得最低的空载温度.仿真结果增进了对脉冲管制冷机的认识,并为微通道脉冲管制冷机的优化设计提供理论支持.  相似文献   

12.
1前言脉冲管制冷机已基本达到了实用化的程度。但在理论方面,仍有较多问题存在,其中双向进气型脉冲管制冷机内的环流问题成为一个讨论的热点和难点。1991年朱绍伟进行双向进气方案的实验验证时[1],已经提到了环流问题,即进出双向阀门的流量不等造成的冷端温度...  相似文献   

13.
小流量涡流管特性的实验研究   总被引:2,自引:0,他引:2  
本文用实验方法研究了小流量涡流管制冷的特性。实验中分别对入口压力和工质等因素对涡流管特性的影响进 行研究。在实验中发现了涡流管冷端制热和热端制冷的反常现象,并对其进行了解释。  相似文献   

14.
长径管作为调相器应用于微型脉冲管制冷机系统时存在阻抗不匹配现象,即调相效果好时,往往脉冲管热端阻抗大小,从而使脉冲管中的压力波幅值小,蓄冷器中损失增大,制冷性能降低;用不同管径和长度的长径管作为调相器时,最低制冷温度产生在阻抗匹配区域或热端阻抗最大的区域;对于本实验中的微型脉冲管制冷机,以长颈管作为调相器时最低制冷温度为107.3 K,低于以单纯的小孔阀作为调相器时所获得的最低制冷温度,但还达不到双向进气的水平。  相似文献   

15.
管壁导热对脉管内自然对流换热影响的研究   总被引:2,自引:2,他引:0  
本文计算了不同脉管倾角和管壁材料下脉管管壁导热对自然对流换热的影响。发现脉管壁面导热对换热的影响不仅体现在增加了壁面的纯导热部分,更主要的上强化了脉管内的自然对流;壁面和内部气体的温度差异沿脉符轴向的变化是管壁导热强化自然对流的主要原因。  相似文献   

16.
热声发动机驱动的脉管制冷机是一种完全无运动部件的低温制冷机,具有非常好的应用前景,本文介绍了本实验室在这方面取得的最新进展。首先我们对驻波热声发动机进行了改进设计,提高了其驱动压比,用氦气作为工质最大压比达到了1.15。在此基础上我们用其驱动同轴双向进气小孔型脉管制冷机,通过调整热声发动机的振荡频率,使之与脉管达到匹配,最终达到了84.3K的最低制冷温度,这也是目前用驻波热声发动机驱动脉管所达到的最低制冷温度。同时,在此实验过程中,一些抑制跳频的方法也得到了实验验证。  相似文献   

17.
本文通过对脉管内自然对流的数值模拟,讨论了当脉管冷端处在不同方向时,脉管内的自然对流对脉管制冷机性能的影响.数值模拟结果表明,当冷端在下时获得的制冷温度最低;当热端在下并与重力方向成30°时制冷温度最高.结论与实验测量结果定性一致.所做的理论分析对实现脉管制冷机的良好运行有指导意义。  相似文献   

18.
The advancement of highly boosted internal combustion engines (ICEs) with high thermal efficiency is mainly constrained by knock and super-knock, respectively, due to the end gas autoignition and detonation development. The pressure wave propagation and reflection in a small confined space may strongly interact with local end gas autoignition, leading to combustion characteristics different from those in a large chamber or open space. The present study investigates the transient autoignition process in an iso-octane/air mixture inside a closed chamber under engine-relevant conditions. The emphasis is given to the assessment of effects of the pressure wave-wall reflection and the mechanism of extremely strong pressure oscillation typical for super-knock. It is found that the hot spot induced autoignition in a closed chamber can be greatly affected by shock/pressure wave reflection from the end wall. Different autoignition modes respectively from the hot spot and the end wall reflection are identified. A non-dimensional parameter quantifying the interplay between different length and time scales is introduced, which helps to identify different autoignition regimes including detonation development near the end wall. It is shown that detonation development from the hot spot may cause super-knock with devastating pressure oscillation. However, the detonation development from the end wall can hardly produce pressure oscillation strong enough for the super-knock. The obtained results provide a fundamental insight into the knocking mechanism in engines under highly boosted conditions.  相似文献   

19.
Nonlinear gas oscillations excited in an open tube by a flat piston at one of the tube ends are studied. The sinusoidal piston oscillations in the shock-free wave mode are created by a vibration exciter near the first eigenfrequency. Expressions for gas pressure oscillations are obtained for a tube with a nonrounded end without a flange and secondary flow velocity components. The influence of the piston displacement amplitude on the pressure range and secondary flow velocity of gas is studied. The theoretical calculations of the gas pressure are compared with experimental data. An estimate for the velocity of particle motion along the tube axis is presented with calculated values of the secondary flow velocity.  相似文献   

20.
本文利用Fluent软件对惯性管进行数值模拟,计算采用二维层流的数值模型,得到惯性管入口处质量流量与压力波之间的相位及惯性管内部的压力波幅值和质量流量幅值的变化,给出不同频率及惯性管尺寸对惯性管入口处压力波与质量流量之间的相位的影响.通过分析并计算得到脉冲管冷端质量流量,进行设计计算.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号