首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A thermal squeezed state representation of inflaton is constructed for a flat Friedmann–Robertson–Walker (FRW) background metric and the phenomenon of particle creation is examined during the oscillatory phase of inflaton, in the semiclassical theory of gravity. An approximate solution to the semiclassical Einstein equation is obtained in thermal squeezed state formalism perturbatively and is found obey the same power-law expansion as that of classical Einstein equation. In addition to that the solution shows oscillatory in nature except on a particular condition. It is also noted that, the coherently oscillating nonclassical inflaton, in thermal squeezed vacuum state, thermal squeezed state, and thermal coherent state, suffers particle production and the created particles exhibit oscillatory behavior. The present study can account for the postinflation particle creation due to thermal and quantum effects of inflation in a flat FRW universe.  相似文献   

2.
Using squeezed vacuum states formalism of quantum optics, a homogeneous and massive scalar field minimally coupled to gravity in Bianchi type-I model of the universe is examined in the frame work of semiclassical theory of gravity. Hence an approximate leading solution to the semiclassical Einstein equation is found. The next order solution for each scale factor in their respective direction show power law of expansion. It is further noted that evolution of scale factors are mutually correlated. The phenomena of nonclassical particle creation is also examined in the anisotropic background cosmology.  相似文献   

3.
张晓燕  王继锁 《光子学报》2012,41(4):493-496
利用热场动力学及相干热态表象理论,重构了有限温度下介观RLC电路的Wigner函数,研究了有限温度下介观RLC电路的量子涨落.借助于Weyl-Wigner理论讨论了有限温度下介观RLC电路Wigner函数的边缘分布,并进一步阐明了Wigner函数边缘分布统计平均的物理意义.结果表明:有限温度下介观RLC电路中电荷和电流的量子涨落随着温度和电阻值的增加而增加,回路中的电荷和电流之间存在着压缩效应,这种量子效应是由于系统零点振动的涨落而引起的;有限温度下介观RLC电路Wigner函数边缘分布的统计平均正好是储存在介观RLC电路中电容和电感上的能量.  相似文献   

4.
利用热场动力学及相干热态表象理论,重构了有限温度下介观RLC电路的Wigner函数,研究了有限温度下介观RLC电路的量子涨落.借助于Weyl-Wigner理论讨论了有限温度下介观RLC电路Wigner函数的边缘分布,并进一步阐明了Wigner函数边缘分布统计平均的物理意义.结果表明: 有限温度下介观RLC电路中电荷和电流的量子涨落随着温度和电阻值的增加而增加,回路中的电荷和电流之间存在着压缩效应,这种量子效应是由于系统零点振动的涨落而引起的; 有限温度下介观RLC电路Wigner函数边缘分布的统计平均正好是储存在介观RLC电路中电容和电感上的能量.  相似文献   

5.
The quantum field theory of a scalar field in curved space-time is studied usingthe squeezed coherent state representation. In this representation the expectationvalues of the stress-energy tensor of the scalar field is calculated. The presentcalculation can account for the production of particles in the early universe.  相似文献   

6.
《Physics letters. A》2006,353(5):427-430
In this Letter we discuss squeezing state of magnon in ferromagnet, which permits a reduction in the quantum fluctuation of the spin component to below the zero-point quantum noise level of coherent magnon states. We investigate the generation of squeezed magnon state through calculating the expectation values of spin component fluctuation. The mean field theory is introduced in dealing with the nonlinear interaction terms of Hamiltonian of magnon system.  相似文献   

7.
Reviewing the ideas developed in [1], the ground state life time of a finite size atomic Bose Einstein condensate is studied for coherent, squeezed coherent and thermal coherent ground states. Ground state evolution of coherent and squeezed coherent states in a double well potential is studied. Effects of thin spectrum on Bose-Einstein condensates is discussed and quasiparticle excitation lifetimes are calculated. It is shown that the effect of the states we use on the free energy vanishes in the thermodynamic limit. Possible extension to a double well potential and effect of a second broken symmetry is also discussed.  相似文献   

8.
We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a θ-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man'ko states and circular squeezed states. The relation between these states and the “classical” trajectories is investigated, and we present numerical explorations of some semiclassical quantities.  相似文献   

9.
The analysis of this article is entirely within classical physics. Any attempt to describe nature within classical physics requires the presence of Lorentz-invariant classical electromagnetic zero-point radiation so as to account for the Casimir forces between parallel conducting plates at low temperatures. Furthermore, conformal symmetry carries solutions of Maxwell’s equations into solutions. In an inertial frame, conformal symmetry leaves zero-point radiation invariant and does not connect it to non-zero-temperature; time-dilating conformal transformations carry the Lorentz-invariant zero-point radiation spectrum into zero-point radiation and carry the thermal radiation spectrum at non-zero temperature into thermal radiation at a different non-zero temperature. However, in a non-inertial frame, a time-dilating conformal transformation carries classical zero-point radiation into thermal radiation at a finite non-zero-temperature. By taking the no-acceleration limit, one can obtain the Planck radiation spectrum for blackbody radiation in an inertial frame from the thermal radiation spectrum in an accelerating frame. Here this connection between zero-point radiation and thermal radiation is illustrated for a scalar radiation field in a Rindler frame undergoing relativistic uniform proper acceleration through flat spacetime in two spacetime dimensions. The analysis indicates that the Planck radiation spectrum for thermal radiation follows from zero-point radiation and the structure of relativistic spacetime in classical physics.  相似文献   

10.
G. Vinod  K. Babu Joseph 《Pramana》1998,51(3-4):357-363
Tom and Goodison [5] have shown that for generic values ofq, gravitationally induced particle creation is impossible in the ordinary vacuum state. Here we consider the evolution of aq-deformed scalar field in a curved spacetime and observe that if the field is either represented by a coherent state or a squeezed state, there is a change in the energy density of the field indicating the possibility of particle creation.  相似文献   

11.
12.
The time evolution of vacuum energy density is investigated in the coherent states of inflationary universe using a linear invariant approach. The linear invariants we derived are represented in terms of annihilation operators. On account of the fact that the coherent state is an eigenstate of an annihilation operator, the wave function.in the coherent state is easily evaluated by solving the eigenvalue equation of the linear invariants. The expectation value of the vacuum energy density is derived using this wave function.Fluctuations of the scalar field and its conjugate momentum are also investigated. Our theory based on the linear invariant shows that the vacuum energy density of the universe in a coherent state is decreased continuously with time due to nonconservative force acting on the coherent oscillations of the scalar field,which is provided by the expansion of the universe. In effect, our analysis reveals that the vacuum energy density decreases in proportion to t-β where β is 3/2 for radiation-dominated era and 2 for matter-dominated era. In the case where the duration term of radiation-dominated era is short enough to be negligible, the estimation of the relic vacuum energy density agrees well with the current observational data.  相似文献   

13.
We develop a holographic (bottom-up) gravity model for QCD to understand the connection between the peak in the trace anomaly and the magnitude of heavy quark energy loss in a strongly-coupled plasma. The potential of the scalar field on the gravity side is constructed to reproduce some properties of QCD at finite temperature and its parameters are constrained by fitting lattice gauge theory results. The energy loss of heavy quarks (as predicted by the holographic model) is found to be strongly sensitive to the medium properties.  相似文献   

14.
罗质华 《物理学报》2013,62(20):207201-207201
采用关联表象变分波函数方案, 介入三个非经典关联效应, 求解有限温度双能态自旋-晶格声子耦合量子隧道系统的非经典态, 着重研究化解由于粒子自旋-单声子相互作用引起的量子涨落导致双能态系统的退相干性量子耗散. 这三个非经典关联效应是: 1) 声子位移-粒子自旋 (σz)间强非绝热关联; 2) 声子压缩态效应及其伴随发生的单声子相干态-声子压缩态两过程相干效应; 3) 由关联表象导致的声子位移(UD)与声子压缩(US)的表象关联非绝热修正. 结果表明: 由于引入粒子自旋-双声子相互作用, 大幅度地增强了声子场压缩态, 特别是更进一步极大幅度地增强了非经典压缩-相干态效应. 因此, 由粒子自旋-单声子相互作用产生的Debye-Walle相干弹性散射效应导致量子隧道项(-Δ0σx)的强烈指数衰减及其伴随严重的量子相干损失的极大幅度的抑制, 并且自旋-晶格声子耦合量子隧道系统的非经典态能量大幅度降低. 关键词: 非经典能态 量子隧穿相干损失 自旋-双声子相互作用 压缩相干态效应  相似文献   

15.
We carried out a study of statistical properties of a squeezed coherent state superposition (SCSS) evolving under a thermal reservoir at zero and finite temperature. Our results reveal some peculiarities not noticed by previous studies, which were mainly focused on ideal (lossless) properties of SCSS. Our main results indicate the existence of realistic parameters for which SCSS, at zero absolute, remains sub-Poissonian or squeezed asymptotically, while, at finite temperature, we found that SCSS only loses its squeezing or sub-Poissonian character at large times as compared with the time needed to the SCSS become a complete mixture.  相似文献   

16.
Fluctuation of Mesoscopic RLC Circuit at Finite Temperature   总被引:1,自引:0,他引:1       下载免费PDF全文
We consider the fluctuation of mesoscopic RLC circuit at finite temperature since a resistance always produces Joule heat when the circuit is working. By virtue of the thermo field dynamics and the coherent thermo state representation we show that the quantum mechanical zero-point fluctuations of both charge and current increase with the rising temperature and the resistance value.  相似文献   

17.
Both particle physics and the 1890s Seeliger–Neumann modification of Newtonian gravity suggest considering a “mass term” for gravity, yielding a finite range due to an exponentially decaying Yukawa potential. Unlike Nordström’s “massless” theory, massive scalar gravities are strictly Special Relativistic, being invariant under the Poincaré group but not the conformal group. Geometry is a poor guide to understanding massive scalar gravities: matter sees a conformally flat metric, but gravity also sees the rest of the flat metric, barely, in the mass term. Infinitely many theories exhibit this bimetric ‘geometry,’ all with the total stress–energy’s trace as source. All are new except the Freund–Nambu theory. The smooth massless limit indicates underdetermination of theories by data between massless and massive scalar gravities. The ease of accommodating electrons, protons and other fermions using density-weighted Ogievetsky–Polubarinov spinors in scalar gravity is noted.  相似文献   

18.
We investigate continuous variable (CV) quantum teleportation using relevant classes of non-Gaussian states of the radiation field as entangled resources. First, we introduce the class two-mode squeezed symmetric superposition of Fock states, including finite truncations of twin-beam Gaussian states as special realizations. These states depend on a set of free independent parameters that can be adjusted for the optimization of teleportation protocols, with an enhancement of the success probability of teleportation both for coherent and Fock input states. We show that the optimization procedure reduces the entangled resources to truncated twin beam states, which thus represents an optimal class of non-Gaussian resources for quantum teleportation. We then introduce a further class of two-mode non-Gaussian entangled resources, in the form of squeezed cat-like states. We analyze the performance and the properties of such states when optimized for (CV) teleportation, and compare them to the optimized squeezed Bell-like states introduced in a previous work [12]. We discuss how optimal resources for teleportation are characterized by a suitable balance of entanglement content and squeezed vacuum affinity. We finally investigate the effects of thermal noise on the efficiency of quantum teleportation. To this aim, a convenient framework is to describe noisy entangled resources as linear superpositions of non-Gaussian state and thermal states. Although the presence of the thermal component strongly reduces the teleportation fidelity, noisy non-Gaussian states remain preferred resources when compared to noisy twin-beam Gaussian states.  相似文献   

19.
Using the Plana summation formula in complex variable function theory,we have calculated the Casimir energy related to the zero-point fluctuations of electromagnetic fields in three dimensional space without introducing any cutoff parameter or function.The finite analytical expression obtained coincides precisely with the known experimental and theoretical results.The Casimir effects in high dimensional space and relevant to massive scalar field are also discussed.  相似文献   

20.
From calculations of the variance, or the fluctuations, and the mean energy densityof a massless scalar field in the Minkowski vacuum as a function of an intrinsicscale defined by the world function between two nearby points (as used in pointseparation regularization), we show that, contrary to prior claims, the ratio ofvariance to its mean squared being of the order unity does not imply a failureof semiclassical gravity. It is more a consequence of the quantum nature of thestate of the matter field than any inadequacy of the theory of spacetime withquantum matter as source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号