首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Ying Yang 《中国物理 B》2022,31(6):60303-060303
With the rapid development of machine learning, artificial neural networks provide a powerful tool to represent or approximate many-body quantum states. It was proved that every graph state can be generated by a neural network. Here, we introduce digraph states and explore their neural network representations (NNRs). Based on some discussions about digraph states and neural network quantum states (NNQSs), we construct explicitly an NNR for any digraph state, implying every digraph state is an NNQS. The obtained results will provide a theoretical foundation for solving the quantum many-body problem with machine learning method whenever the wave-function is known as an unknown digraph state or it can be approximated by digraph states.  相似文献   

2.
Human experts cannot efficiently access physical information of a quantum many-body states by simply "reading"its coefficients, but have to reply on the previous knowledge such as order parameters and quantum measurements.We demonstrate that convolutional neural network(CNN) can learn from coefficients of many-body states or reduced density matrices to estimate the physical parameters of the interacting Hamiltonians, such as coupling strengths and magnetic fields, provided the states as the ground states. We propose QubismNet that consists of two main parts: the Qubism map that visualizes the ground states(or the purified reduced density matrices) as images, and a CNN that maps the images to the target physical parameters. By assuming certain constraints on the training set for the sake of balance, QubismNet exhibits impressive powers of learning and generalization on several quantum spin models. While the training samples are restricted to the states from certain ranges of the parameters, QubismNet can accurately estimate the parameters of the states beyond such training regions. For instance, our results show that QubismNet can estimate the magnetic fields near the critical point by learning from the states away from the critical vicinity. Our work provides a data-driven way to infer the Hamiltonians that give the designed ground states, and therefore would benefit the existing and future generations of quantum technologies such as Hamiltonian-based quantum simulations and state tomography.  相似文献   

3.
We demonstrate through an exactly solvable model that collective coupling to any thermal bath induces effectively nonlinear couplings in a quantum many-body (multispin) system. The resulting evolution can drive an uncorrelated large-spin system with high probability into a macroscopic quantum-superposition state. We discuss possible experimental realizations.  相似文献   

4.
We report on the observation of many-body spin dynamics of interacting, one-dimensional (1D) ultracold bosonic gases with two spin states. By controlling the nonlinear atomic interactions close to a Feshbach resonance we are able to induce a phase diffusive many-body spin dynamics of the relative phase between the two components. We monitor this dynamical evolution by Ramsey interferometry, supplemented by a novel, many-body echo technique, which unveils the role of quantum fluctuations in 1D. We find that the time evolution of the system is well described by a Luttinger liquid initially prepared in a multimode squeezed state. Our approach allows us to probe the nonequilibrium evolution of one-dimensional many-body quantum systems.  相似文献   

5.
The quantum many-body problem(QMBP) has become a hot topic in high-energy physics and condensed-matter physics. With an exponential increase in the dimensions of Hilbert space, it becomes very challenging to solve the QMBP, even with the most powerful computers. With the rapid development of machine learning, artificial neural networks provide a powerful tool that can represent or approximate quantum many-body states. In this paper, we aim to explicitly construct the neural network representations of hypergraph states. We construct the neural network representations for any k-uniform hypergraph state and any hypergraph state,respectively, without stochastic optimization of the network parameters. Our method constructively shows that all hypergraph states can be represented precisely by the appropriate neural networks introduced in [Science 355(2017) 602] and formulated in [Sci. China-Phys.Mech. Astron. 63(2020) 210312].  相似文献   

6.
Studying the complex quantum dynamics of interacting many-body systems is one of the most challenging areas in modern physics. Here, we use machine learning (ML) models to identify the symmetrized base states of interacting Rydberg atoms of various atom numbers (up to six) and geometric configurations. To obtain the data set for training the ML classifiers, we generate Rydberg excitation probability profiles that simulate experimental data by utilizing Lindblad equations that incorporate laser intensities and phase noise. Then, we classify the data sets using support vector machines (SVMs) and random forest classifiers (RFCs). With these ML models, we achieve high accuracy of up to 100% for data sets containing only a few hundred samples, especially for the closed atom configurations such as the pentagonal (five atoms) and hexagonal (six atoms) systems. The results demonstrate that computationally cost-effective ML models can be used in the identification of Rydberg atom configurations.  相似文献   

7.
For an anyon model in two spatial dimensions described by a modular tensor category, the topological S-matrix encodes the mutual braiding statistics, the quantum dimensions, and the fusion rules of anyons. It is nontrivial whether one can compute the S-matrix from a single ground state wave function. Here, we define a class of Hamiltonians consisting of local commuting projectors and an associated matrix that is invariant under local unitary transformations. We argue that the invariant is equivalent to the topological S-matrix. The definition does not require degeneracy of the ground state. We prove that the invariant depends on the state only, in the sense that it can be computed by any Hamiltonian in the class of which the state is a ground state. As a corollary, we prove that any local quantum circuit that connects two ground states of quantum double models (discrete gauge theories) with non-isomorphic abelian groups must have depth that is at least linear in the system’s diameter. As a tool for the proof, a manifestly Hamiltonian-independent notion of locally invisible operators is introduced. This gives a sufficient condition for a many-body state not to be generated from a product state by any small depth quantum circuit; this is a many-body entanglement witness.  相似文献   

8.
For matrix product states(MPSs) of one-dimensional spin-\(\frac {1}{2}\) chains, we investigate a new kind of conventional quantum phase transition(QPT). We find that the system has two different ferromagnetic phases; on the line of the two ferromagnetic phases coexisting equally, the system in the thermodynamic limit is in an isolated mediate-coupling state described by a paramagnetic state and is in the same state as the renormalization group fixed point state, the expectation values of the physical quantities are discontinuous, and any two spin blocks of the system have the same geometry quantum discord(GQD) within the range of open interval (0,0.25) and the same classical correlation(CC) within the range of open interval (0,0.75) compared to any phase having no any kind of correlation. We not only realize the control of QPTs but also realize the control of quantum correlation of quantum many-body systems on the critical line by adjusting the environment parameters, which may have potential application in quantum information fields and is helpful to comprehensively and deeply understand the quantum correlation, and the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems.  相似文献   

9.
We describe a numerical scheme of combining Monte Carlo procedure and quantum scattering theory to simulate electron transport processes through nanostructures. The transport of electrons through a nanostructure is a highly nontrivial nonequilibrium process in which we should consider the interplay of (i) complicated many-body quantum states in nanostructure, (ii) thermal relaxation processes keeping the leads (electron reservoirs) in local equilibrium, (iii) the coupling between the leads and the nanostructure, and (iv) the bias causing nonequilibrium, current, and evolution of quantum states in the nanostructure. Considering the quantum coherence within the nanostructure, we include the degrees of freedom of the nanostructure and a single tunneling electron and solve the Schrödinger equation for the many-body states to obtain the scattering matrix in the Fock space from which both the transmission of the electron and the variation of the states in nanostructure can be full quantum-mechanically calculated. The transport is investigated by the Monte Carlo simulation of successive scattering events of single electrons which are sampled with the Metropolis scheme governed by the scattering probabilities, the thermal statistics in the leads, and the applied bias. By this way from a given initial nanostructure state we can calculate the time evolutions of the current and the internal state. As examples we investigate the transmission of electrons through a two-level system. It is shown that the proposed method can properly deal with the inelastic effects in transport processes.  相似文献   

10.
A linear quantum dynamic theory for output coupler of Bose-Einstein condensed atoms in a trap is considered with the Bogoliu bov approximation in the thermodynamical limit based on the recent MIT experiment (Phys. Rev. Lett. 78 (1997) 582) for atomic laser. In evolution of total system, the solution of the many-body problem shows a factorization of dynamic process, i.e., the wave function initially prepared in a direct product of a vacuum state and a coherent state remains in a direct product of coherent states at any instance. Physically, this factorizable structure predicts that an ideal condensate in the trap will remain in such a condensate state after the radiation frequency interaction while the output-coupler pulse of atoms forms a macroscopic quantum state in a propagating mode, i.e., the atomic laser.  相似文献   

11.
In this paper, we discuss the question of the minimum time needed for any state of a given quantum system to evolve into a distinct (orthogonal) state. This problem is relevant to deriving physical limits in quantum computation and quantum information processing. Here, we consider both cases of nonadiabatic and adiabatic evolution and we derive the Hamiltonians corresponding to the minimum time evolution predicted by the Margolus–Levitin theorem.  相似文献   

12.
杨锦涛  曹俊鹏  杨文力 《中国物理 B》2022,31(1):10314-010314
We study the non-Markovian dynamics of an open quantum system with machine learning.The observable physical quantities and their evolutions are generated by using the neural network.After the pre-training is completed,we fix the weights in the subsequent processes thus do not need the further gradient feedback.We find that the dynamical properties of physical quantities obtained by the dynamical learning are better than those obtained by the learning of Hamiltonian and time evolution operator.The dynamical learning can be applied to other quantum many-body systems,non-equilibrium statistics and random processes.  相似文献   

13.
喻祥敏  谭新生  于海峰  于扬 《物理学报》2018,67(22):220302-220302
近年来,探索新的拓扑量子材料、研究拓扑材料的新奇物理性质成为凝聚态物理领域的一个热点.但是,由于合成、测量等手段的限制,人们难以在真实材料中实现和观测很多理论预言的材料及其物理性质,促使量子模拟日益成为研究量子多体系统的一个重要手段.作为全固态器件,超导量子电路是一个在扩展性、集成性、调控性上都具有巨大优势的人工量子系统,是实现量子模拟的重要方案.本文总结了利用超导量子电路对时间-空间反演对称性保护的拓扑半金属、Hopf-link半金属和Maxwell半金属等拓扑材料的量子模拟,显示出超导量子电路在模拟凝聚态物理系统方面具有广阔前景.  相似文献   

14.
W. Wang  S.C. Hou  X.X. Yi 《Annals of Physics》2012,327(5):1293-1303
One difficulty with adiabatic quantum computation is the limit on the computation time. Here we propose two schemes to speed-up the adiabatic evolution. To apply this controlled adiabatic evolution to adiabatic quantum computation, we design one of the schemes without any explicit knowledge of the instantaneous eigenstates of the final Hamiltonian. Whereas in another scheme, we assume that the ground state of the Hamiltonian is known, and this information can be used to design the control. By these techniques, a linear speed-up proportional to the nonlinearity can be predicted. As an illustration, we study a two-level system driven by a time-dependent magnetic field under the control. The problem of finding an item in an unsorted database by adiabatic evolution is also examined. The physics behind the control scheme is interpreted.  相似文献   

15.
We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.  相似文献   

16.
The orthogonality catastrophe (OC) of quantum many-body systems is an important phenomenon in condensed matter physics. Recently, an interesting relationship between the OC and the quantum speed limit (QSL) was shown (Fogarty 2020 Phys. Rev. Lett. 124 110601). Inspired by the remarkable feature, we provide a quantitative version of the quantum average speed as another different method to investigate the measure of how it is close to the OC dynamics. We analyze the properties of an impurity qubit embedded into an isotropic Lipkin-Meshkov-Glick spin model, and show that the OC dynamics can also be characterized by the average speed of the evolution state. Furthermore, a similar behavior of the actual speed of quantum evolution and the theoretical maximal rate is shown which can provide an alternative speed-up protocol allowing us to understand some universal properties characterized by the QSL.  相似文献   

17.
In order to gain comprehensive knowledge of an arbitrary unknown quantum state, one feasible way is to reconstruct it, which can be realized by finding a series of quantum operations that can refactor the unitary evolution producing the unknown state. We design an adaptive framework that can reconstruct unknown quantum states at high fidelities, which utilizes SWAP test, parameterized quantum circuits (PQCs) and layerwise learning strategy. We conduct benchmarking on the framework using numerical simulations and reproduce states of up to six qubits at more than 96% overlaps with original states on average using PQCs trained by our framework, revealing its high applicability to quantum systems of different scales theoretically. Moreover, we perform experiments on a five-qubit IBM Quantum hardware to reconstruct random unknown single qubit states, illustrating the practical performance of our framework. For a certain reconstructing fidelity, our method can effectively construct a PQC of suitable length, avoiding barren plateaus of shadow circuits and overuse of quantum resources by deep circuits, which is of much significance when the scale of the target state is large and there is no a priori information on it. This advantage indicates that it can learn credible information of unknown states with limited quantum resources, giving a boost to quantum algorithms based on parameterized circuits on near-term quantum processors.  相似文献   

18.
Machine learning is currently the most active interdisciplinary field having numerous applications;additionally,machine-learning techniques are used to research quantum many-body problems.In this study,we first propose neural network quantum states(NNQSs)with general input observables and explore a few related properties,such as the tensor product and local unitary operation.Second,we determine the necessary and sufficient conditions for the representability of a general graph state using normalized NNQS.Finally,to quantify the approximation degree of a given pure state,we define the best approximation degree using normalized NNQSs.Furthermore,we observe that some 7V-qubit states can be represented by a normalized NNQS,such as separable pure states,Bell states and GHZ states.  相似文献   

19.
We show that for any many-body quantum state there exists an unentangled quantum state such that most of the two-body reduced density matrices are close to those of the original state. This is a statement about the monogamy of entanglement, which cannot be shared without limit in the same way as classical correlation. Our main application is to Hamiltonians that are sums of two-body terms. For such Hamiltonians we show that there exist product states with energy that is close to the ground-state energy whenever the interaction graph of the Hamiltonian has high degree. This proves the validity of mean-field theory and gives an explicitly bounded approximation error. If we allow states that are entangled within small clusters of systems but product across clusters then good approximations exist when the Hamiltonian satisfies one or more of the following properties: (1) high degree, (2) small expansion, or (3) a ground state where the blocks in the partition have sublinear entanglement. Previously this was known only in the case of small expansion or in the regime where the entanglement was close to zero. Our approximations allow an extensive error in energy, which is the scale considered by the quantum PCP (probabilistically checkable proof) and NLTS (no low-energy trivial-state) conjectures. Thus our results put restrictions on the possible Hamiltonians that could be used for a possible proof of the qPCP or NLTS conjectures. By contrast the classical PCP constructions are often based on constraint graphs with high degree. Likewise we show that the parallel repetition that is possible with classical constraint satisfaction problems cannot also be possible for quantum Hamiltonians, unless qPCP is false. The main technical tool behind our results is a collection of new classical and quantum de Finetti theorems which do not make any symmetry assumptions on the underlying states.  相似文献   

20.
A real-time path-integral Monte Carlo approach is developed to study the dynamics in a many-body quantum system coupled to a phonon background until reaching a nonequilibrium stationary state. The approach is based on augmenting an exact reduced equation for the evolution of the system in the interaction picture which is amenable to an efficient path integral (worldline) Monte Carlo approach. Results obtained for a model of inelastic tunneling spectroscopy reveal the applicability of the approach to a wide range of physically important regimes, including high (classical) and low (quantum) temperatures, and weak (perturbative) and strong electron-phonon couplings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号