首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用种子生长法制备了不同长径比的金纳米棒,并通过金硫键的结合在其表面包覆半胱氨酸分子。利用紫外-可见吸收光谱仪,扫描电子显微镜以及拉曼光谱仪等对样品进行分析和表征。实验结果表明金纳米棒产率较高,且一致性较好。表面修饰后的金纳米棒的纵向吸收峰发生蓝移,表明半胱氨酸分子与金纳米棒的结合有助于溶液分散性的提升。以结晶紫为探针分子,随着金纳米棒长径比的增加其拉曼增强效果变强。进一步分析发现,修饰后的金纳米棒的表面增强拉曼光谱的增强效果并未受到影响。通过金纳米棒与半胱氨酸分子牢固的结合,一方面可以提高金纳米棒溶液的分散性与稳定性;另一方面半胱氨酸分子可为金纳米棒修饰其它有机官能团提供了一个牢固的桥梁,有效地拓展了金纳米棒的应用方向。  相似文献   

2.
基于贵金属纳米粒子在折射率传感及探测中的应用,本文运用离散偶极近似,模拟计算了单一金纳米棒的远场消光光谱,研究了其偶极局域表面等离子体共振波长的可调性及折射率的传感特性。研究表明,通过调控金纳米棒的长径比,纳米棒的局域表面等离子体共振波长在可见至近红外波长范围内广泛可调;在可见与近红外波长范围内,该共振波长及对应的折射率灵敏度对纳米棒长径比的响应皆分别呈现出二次与线性的分段特征。此外,利用金介电函数虚部随入射光波长的变化关系,揭示了金纳米棒表面等离子体所对应的半高宽随该共振波长的变化规律;并利用长径比对金纳米棒的品质因子进行了优化,得到了优化的长径比。本文的研究结果对未来设计和制造性能优异的基于局域表面等离子体共振的传感/探测基底和元器件具有重要的理论指导意义。  相似文献   

3.
通过动态光谱跟踪溶液中金纳米棒的尺度和长径比(AR)的变化,成功地获取粒子的生长过程的动态数据. 该过程分为两步:种子快速形成棒状粒子;棒状粒子在一定AR下的生长. 通过分析体系中的一价金、金粒子和抗坏血酸之间的电荷转移过程,建立了金纳米棒生长过程的电荷转移模型,并很好地解释了动态光谱的实验数据.  相似文献   

4.
具有"热点"结构的有序纳米图案由于其高灵敏度和高重复性可以作为表面增强拉曼散射(SERS)基底。基于多级周期阳极氧化铝模板独特的三维孔道,以聚合物复制其多级结构,得到具有一定长径比的纳米棒阵列,并蒸镀贵金属银获得SERS活性。通过精确调控多级周期纳米棒阵列周期内和周期间纳米棒的间距,使纳米棒在等离子体驱动过程中以周期为单位转变为"闭合"状态,从而实现动态响应过程并获得高效SERS活性位点。该动态响应基底有望进一步发展为智能等离激元器件。  相似文献   

5.
银纳米棒光学性质的离散偶极近似计算   总被引:1,自引:0,他引:1  
利用离散偶极近似 (Discretedipoleapproximation ,简称DDA)的方法 ,从理论上对粒子的形状、尺寸及周围介质等因素对银纳米粒子 ,特别是银纳米棒的光学性质的影响进行了较系统的研究 .计算表明 ,置于空气中的棒状银纳米粒子的光学性质与其形状密切相关 ,纵向表面等离子体共振吸收峰的位置随纳米棒长径比的增加呈现线性红移关系 .给出了空气中银纳米棒纵向表面等离子体共振吸收峰的位置随长径比变化的DDA拟合公式 .如果将金属纳米粒子置于折射率更高的介电环境中 ,其纵向等离子体共振吸收峰的位置进一步呈现线性红移关系 .合成的银纳米粒子的TEM图像及相关的UV VIS消光光谱显示DDA计算结果与实验值相当一致 .DDA算法与Mie′s理论在计算球状银纳米粒子的消光系数时给出很接近的结果 ,这表明用DDA的方法来分析银的光学性质是准确可靠的 ;而DDA算法对银纳米棒消光特性的成功拟合则表明 ,该算法相对Gans′理论而言 ,在研究纳米粒子的光学性质时具有更广的适用性及更高的准确性 .  相似文献   

6.
陈先梅  王晓霞  郜小勇  赵显伟  刘红涛  张飒 《物理学报》2013,62(5):56104-056104
利用水热法在直流磁控溅射制备的掺铝氧化锌 (AZO) 种子层上制备了不同形貌和光学性能的掺银ZnO纳米棒, 并采用XRD、扫描电镜、透射谱、光发射谱和EDS谱详细研究了Ag离子与Zn离子的摩尔百分比 (RAg/Zn) 及AZO种子层对掺银ZnO纳米棒的结构和光学性质的影响. 随着RAg/Zn的增加, 掺银ZnO 纳米棒的微结构和光学性质的变化与银掺杂诱导的纳米棒的端面尺寸变化有关. 平均端面尺寸的变化归结于种子层颗粒大小和颗粒数密度不同导致掺入的Ag离子的相对比例不同. 溅射15 min的AZO种子层上生长的ZnO纳米棒由于缺陷增多导致在可见光区的发光峰明显强于溅射10 min 的AZO种子层上、相同RAg/Zn 条件下生长的ZnO纳米棒. Ag掺杂产生的点缺陷增多导致可见光区PL波包较宽. 纯ZnO纳米棒的微结构与种子层厚度导致的结晶度和颗粒大小有关. 关键词: ZnO纳米棒 水热法 Ag掺杂 直流磁控溅射  相似文献   

7.
含纳米棒银溶胶的制备及其光谱性质研究   总被引:1,自引:0,他引:1  
以CTAB表面活性剂胶束为模板用化学还原法制备出含有银纳米棒的银胶体,用透射电镜(TEM)对颗 粒形貌进行了表征.UV Vis吸收谱显示,含银纳米棒溶胶有两个吸收蜂,其中长波长吸收峰位置随胶粒长径比增 加迅速红移和宽化.用多尺寸统计平均的Mie散射模型计算了纳米棒银胶体的吸收谱,较好地解释了长波长吸收 峰的宽化.以此胶体为衬底材料,测量了染料分子的表面增强拉曼散射(SERS),结果显示,SERS强度随胶体中 所含纳米棒长径比的增加呈现先显著增强后缓慢减弱的变化规律,用电磁增强理论对有关现象进行了分析.  相似文献   

8.
二维纳米棒的布朗运动可以用平移扩散和转动扩散运动来描述.提出了一种基于去偏振-偏振图像的动态光散射(DIDLS)测量方法,通过分析纳米棒布朗运动的平移扩散和转动扩散在偏振激光入射下产生的垂直-垂直和垂直-水平偏振动态光散射信号,测量了纳米棒的尺寸和尺寸分布.研究了连续测量的偏振动态光散射信号图像间的相关系数函数,通过两次反演,计算出纳米棒的长度以及长径比,进而得到颗粒的二维尺度分布.分析了不同入射激光波长对测量结果的影响,提出自相关函数的基线值可以作为信噪比的判据.采用650,780,905 nm三种波长对直径为20 nm、长度为300 nm的纳米金棒进行了测量,得到了纳米金棒的平均尺寸和尺寸分布.  相似文献   

9.
表面增强拉曼散射(SERS)很大程度的弥补了拉曼散射强度弱的缺点,迅速成为科研工作者们的研究热点,在食品安全、环境污染、毒品以及爆炸物检测等领域应用广泛。纳米技术的发展使得目前对于SERS的研究主要集中于金属纳米颗粒基底的制备,金属纳米粒子的种类、尺寸及形貌对SERS增强和吸收峰峰位均有影响,要获得好的增强效果,需要对金属纳米结构进行工艺优化。特别是,需要结合金属纳米粒子的结构和激励光波长,以期获得更好的增强效果。为了研究SERS增强和吸收峰之间的关系,开展了具有双共振吸收峰的金属纳米粒子的研究。首先利用FDTD Solutions仿真建模,主要针对金纳米颗粒直径、金纳米棒长径比及分布状态对共振吸收峰进行仿真,得到金纳米球理论直径在50 nm左右,金纳米棒理论长径比在3.5~4.5左右时,吸收峰分别分布在532及785 nm附近,符合多波段激励光拉曼增强条件;对于激励光偏振方向,其沿金纳米棒长轴方向偏振时吸收峰位于785 nm附近,沿金纳米球短轴方向偏振时吸收峰位于532 nm附近。然后采用种子生长法,制备了可用于多种波长激励光的双吸收峰表面增强拉曼散射基底。通过改变硝酸银用量(5,10,20,30和40 μL)、盐酸用量(0.1和0.2 mL)以及其生长时间(15,17,21和23 h)等多种工艺参数来控制金纳米棒含量,得到了同时含有金纳米球及金纳米棒的双吸收共振峰金纳米粒子。最后用该样品作为基底,罗丹明6G(R6G)作为探针分子,分别测试其在532,633和785 nm激励光入射时的SERS表征,对分析物R6G最低检测浓度均达到了10-7 mol·L-1,增强因子达到了~105,满足了多波段SERS检测的需要。  相似文献   

10.
金纳米棒标记HepG2人肝癌细胞的荧光成像及其AFM探测   总被引:2,自引:1,他引:1  
金纳米棒具有独特的光学性质,在生物医学领域有着广泛而重要的应用前景.本文制备了长径比为8∶1的金纳米棒,其在480 nm波长激发下,在560 nm和707 nm波长处有两个荧光发射峰.基于金纳米棒的荧光性质,将其标记于HepG2人肝癌细胞表面,利用激光扫描共聚焦显微镜对标记后的细胞进行荧光成像.在488 nm激发下,获...  相似文献   

11.
In this work, ZnO nanorods (NRs) were fabricated using a low cost chemical bath deposition (CBD) method. The effect of the potassium hydroxide concentration on the fabricated ZnO nanostructures was studied in depth. The optical, structure, and surface morphology properties of the fabricated ZnO nanostructures were investigated using Uv-vis spectroscopy, XRD, and SEM. The results indicate that the formation of hexagonally structured ZnO nanorods with different lengths and diameters was dependent on the KOH concentration. The sample prepared with 2 M of KOH was the best one for optoelectronic applications, since it has the smallest diameters. This sample was annealed at different temperatures (473 K–1073 K). Positron Annihilation Lifetime Spectroscopy was used to determine the defects in the ZnO nanorods. The results show that the positron mean lifetime (τm) decreased as the annealing temperature increased, which means that the overall defects in the ZnO nanorods decreased with increasing temperature. Consequently, higher performance semiconductor devices based on ZnO nanorods could be fabricated after high annealing of the ZnO nanorods.  相似文献   

12.
Size-controlled synthesis of hydroxyapatite nanorods were carried out by chemical precipitation method using polyethylene glycol (MW 600), Tween 20, trisodium citrate, and d-sorbitol as organic modifiers and starting from calcium nitrate, phosphoric acid, and ammonia solution. The influence of the organic modifiers on the sizes of the resultant HAP nanorods was investigated under different synthesis temperatures. It was found that polyethylene glycol was beneficial to the formation of HAP nanorods with a larger aspect ratio (average length/average diameter) at high synthesis temperature, Tween 20 and trisodium citrate favored the formation of small-sized HAP nanorods, and d-sorbitol helped the formation of HAP nanorods with long length at low synthesis temperatures.  相似文献   

13.
Electron beam induced formation of carbon nanorods was realized in situ under high resolution scanning electron microscopy (HRSEM). When a CVD deposited carbon nanotube sample was irradiated with an electron beam in an HRSEM, progressive etching of the sample, expanding of the nanotubes, and formation of additional nanorods have been observed. Transmission electron microscopy study revealed typical nanorods of 20 nm in diameter and with amorphous structure. The direct observation of the synthesis of nanorods under electron microscopy manifests the possibility of nano-machining of such nanomaterials using electron beams. This may lead to future integration and networking of nanostructures of different functionalities, which is crucial for nanotechnology.  相似文献   

14.
ZnO and ZnMgO nanostructures were synthesized on Si (1 0 0) substrates with the assistance of a gold catalyst, using a thermal evaporation method with a ZnO/ZnMgO compound as the source material. The substrates were placed in different temperature zones. ZnO nanostructures with different morphologies and different compounds were obtained at different substrate temperatures. Nanostructures with nanorods and nanosheets morphologies formed in the low and high temperature zones, respectively. The nanorods grown in the low temperature zone had two phases, hexagonal and cubic. Energy dispersive X-ray (EDX) results showed that the nanorods with a cubic shape contained more Mg in comparison to the nanowires with a hexagonal shape. We found that the substrate temperature and the gold catalyst were two key factors for the doping of Mg and the formation of nanostructures with different morphologies. Room temperature photoluminescence spectroscopy showed a blue-shift for the nanostructures with the nanorods morphology. This shift could be attributed to Mg effects that were detected in the nanorods.  相似文献   

15.
Most of lasers used for imaging and heating gold nanorods are single-wavelength lasers and their efficiency to interact with different gold nanorods is limited. In this study, we demonstrated that supercontinuum light could be a fast, effective and energy efficient excitation source for heating of gold nanorods. The photothermal effect and the heating speed of gold nanorods illuminated by a supercontinuum light and femtosecond pulses through two-photon excitation are experimentally studied through using transmission electron microscopy images and photoluminescence images of gold nanorods. It is found that the supercontinuum light improves the heating speed by 39 %, and melts 30 % more of gold nanorods compared with the femtosecond pulse excitation approach. The heating speed of gold nanorods by supercontinuum light depends not only on its polarization states, but also on the pulse width and numerical aperture of its focused beam. It has been found that the supercontinuum is more efficient in heating of gold nanorods, making it potentially valuable for clinical applications.  相似文献   

16.
Size-controlled synthesis of pure rutile-phase TiO2 nanorods was carried out by a hydrothermal method using different organic acids as modifiers, and metatitanic acid and concentrated sulfuric acid as raw materials. The synthesized rutile TiO2 nanorods were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of organic acid modifiers on the sizes of rutile TiO2 nanorods were investigated. It was found that the steric effect occurred by the organic modifiers and non-polarity of organic acids were beneficial to the formation of small-sized rutile TiO2 nanorods. The strongly coordinative interaction between the carboxyl (or hydroxyl) group of the modifier and the surface of TiO2 nanoparticles effectively inhibited the crystal growth.  相似文献   

17.
We examined the temperature-dependent electrical, optical, and structural properties of VO2 on ZnO nanorods with different lengths in the temperature range from 30 to 100 °C. ZnO nanorods with a uniform length were grown on Al2O3 substrates using a metal organic chemical vapor deposition, and subsequently, VO2 was ex-situ deposited on ZnO nanorods/Al2O3 templates using a sputtering deposition. The optical properties of the VO2/ZnO nanorods were measured simultaneously with direct current (DC) resistance using the reflectivity of an infrared (IR) laser beam with a wavelength of 790 nm. The local structural properties around V atoms of VO2/ZnO nanorods were simultaneously measured with the DC resistance using x-ray absorption fine structure at the V K edge. Direct comparison of the temperature-dependent resistance, IR reflectivity, and local structure reveals that an optical phase transition first occurs, a structural phase transition follows, and an insulator-to-metal transition finally appears during heating.  相似文献   

18.
The seed-mediated growth of gold nanorods is shown to be strongly dependent on the reaction time and chemical environment of the reaction solution. The versatile seed-mediated approach in aqueous surfactant solutions has been used in this study for the synthesis of gold nanorods. Changes in the aspect ratio of gold nanorods were reflected in shifts of the plasmon resonance peaks and were monitored using UV-Visible absorption spectroscopy (UV-Vis) to follow the different stages of gold nanorod formation as a function of time and varying amounts of silver ion. Unlike the use of strong reducing agents to make spherical gold nanoparticles, the growth of gold nanorods requires weak reducing conditions, leading to an unknown degree of gold reduction. Therefore, cyclic voltammetry was used to electrochemically interrogate the entire reaction from gold seed to gold nanorod as a function of time. Data obtained revealed that time-dependent gold species are involved in gold nanorod formation.  相似文献   

19.
Selective growth of ZnO nanorods has been successfully performed on the patterned Au/Ti metal electrode regions on a glass substrate by using a seeded thermo-electrochemical method in an acidic growth solution. The selective growth mechanism of the thermo-electrochemical method was proposed by using a series of chemical reactions for the first time. The thermo-electrochemical selective ZnO growth was performed on the cathode electrode at a temperature below 90 °C. A ZnO seed layer was precoated and selectively etched away from the non-metal regions in order to create the patterned selective nucleation sites on which the precursors are transferred and crystallized into ZnO nanorods. Both the dimensions and the placements of the ZnO nanorods have been simultaneously controlled. Energy dispersive X-ray spectrometry showed that the selectively grown ZnO nanorods consist of only Zn and O, indicating that the selectively grown ZnO nanorods are pure and contamination free. XRD and electron diffraction patterns revealed that the obtained ZnO nanorods have a wurtzite single-crystal structure.  相似文献   

20.
Lithium manganese phosphate (LiMnPO4) nanorods were synthesized using the modified polyol method. Polyvinylpyrrolidone was used as a stabilizer to control the shape and size of LiMnPO4 nanorods. Resin coating process was used to coat the carbon over the LiMnPO4 nanorods. X-ray diffraction and Fourier transform infrared spectroscopy results showed the formation of LiMnPO4 crystalline phase. The TEM image shows a uniform coating of the nano size (2.3 nm) carbon over the surface of LiMnPO4 nanorods and the EDS spectrum of the carbon-coated LiMnPO4 nanorods confirming the presence of carbon element along with the other Mn, P, and O elements. Impedance measurements were made on pure and carbon-coated LiMnPO4 nanorods, and their conductivities were evaluated by analyzing the measured impedance data using the WinFIT software. More than two orders of magnitude of conductivity enhancement was observed in the carbon-coated LiMnPO4 nanorods compared to pure ones, and the conductivity enhancement may be attributed to the presence of carbon over LiMnPO4 nanorods. Temperature dependence of conductivity and ac conductivity were calculated using impedance data of pure and carbon-coated LiMnPO4 nanorods. CR2032 type lithium ion coin cells were fabricated using pure and carbon-coated LiMnPO4 nanorods and characterized by measuring charge–discharge cycles between 2.9 and 4.5 V at room temperature. More than 25 % of improved capacity was achieved in the carbon-coated LiMnPO4 nanorods when compared to pure ones synthesized using modified polyol and resin coating processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号