首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
Spatiotemporal vector and phase properties of interference field of low-frequency signalling tone between three local vortices in a real shallow sea wave-guide have been studied.It has been demonstrated that in the field of constructive interference,components of particle velocity field and acoustic pressure are coherent.As a consequence the transfer of signal energy alog the axis of a shallow sea wave-guide is accomplished with plane wave.Physical objects are detected in the field of destructive interference,which,according to known deterministic signs,can be defined as local vortices of the intensity vector.A large-scale vorticity with acoustic intensity vector curl,components different from zero originates in the vicinity of local vortices.Regular particle displacements of local vortices have been detected against combined receiving device phase centre along the axis of a wave-guide.It has been demonstrated that the structure of vortices depends on signal/noise ratio.Local vortices and vorticity form vortex structure of vector acoustic field.Signalling tone with frequency of 88 ± 1 Hz from near-surface moving sound source was taken into consideration.Introduced results of full-scale experiment expand our concepts of real fundamental properties of shallow sea acoustic field and are to be considered in theoretical models.  相似文献   

2.
Geoacoustic Inversion Based on a Vector Hydrophone Array   总被引:1,自引:0,他引:1       下载免费PDF全文
We propose a geoacoustic inversion scheme employing a vector hydrophone array based on the fact that vector hydrophone can provide more acoustic field information than traditional pressure hydrophones. Firstly, the transmission loss of particle velocities is discussed. Secondly, the sediment sound speed is acquired by a matchedfield processing (MFP) procedure, which is the optimization in combination of the pressure field and vertical particle velocity field. Finally, the bottom attenuation is estimated from the transmission loss difference between the vertical particle velocity and the pressure. The inversion method based on the vector hydrophone array mainly has two advantages: One is that the MFP method based on vector field can decrease the uncertain estimation of the sediment sound speed. The other is that the objective function based on the transmission loss difference has good sensitivity to the sediment attenuation and the inverted sediment attenuation is independent of source level. The validity of the inverted parameters is examined by comparison of the numerical results with the experimental data.  相似文献   

3.
In this work,acoustic vector characteristics of near fields scattered by an underwater finite cylindrical baffle are investigated theoretically and experimentally.The analytic expressions for the scattered pressure and particle velocity are derived using the elastic thin shell theory.Calculations are presented for the scattered near fields of the pressure,the particle velocity and the intensity.It is found that the pressure and the particle velocity fields near the surface of the cylindrical baffle are characterized by complex interference structure,particle velocity directions and the source bearings are not consistent.The phase difference between the pressure and the particle velocity is not zero and the intensity vector does not reflect the sound bearings.It can be noted that the distortions of the fields will make the original vector signal processing method based on the free space assumption be no longer applicable in the presence of the cylindrical baffle.These results can serve as a basis of the application for the acoustic vector sensor on board.  相似文献   

4.
In order to solve the problem of DOA(direction of arrival)estimation of underwater remote targets,a novel subspace-decomposition method based on the cross covariance matrix of the pressure and the particle velocity of acoustic vector sensor arrays(AVSA)was proposed. Whereafter,using spatio-temporal virtual tapped-delay-line,a new eigenvector-based criteria of detection of number of sources and of subspace partition is also presented.The theoretical analysis shows that the new source detection and direction finding method is different from existing AVSA based DOA estimation methods using particle velocity information of acoustic vector sensor(AVS)as an independent array element.It is entirely based on the combined information processing of pressure and particle velocity,has better estimation performance than existing methods in isotropic noise field.Computer simulations with data from lake trials demonstrate,the proposed method is effective and obviously outperforms existing methods in resolution and accuracy in the case of low signal-to-noise ratio(SNR).  相似文献   

5.
Acoustic vector sensor signal processing   总被引:2,自引:0,他引:2  
Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.  相似文献   

6.
1 IntroductionSound field has both scalar field (acoustic pressure) and vector (acoustic particle velocity)field. The joillt processing of them should open a new way to understand ocean environmelltknowledge and to detect targets, it is a virgin soil for pioneer.ThaditionaJ underwater acoustic system only utilizes pressure information given by hydrophone and its array. A hydrophone and a acoustic particle velocity sensor constitute anintegrated one named "combine sensor". Combine sensor syste…  相似文献   

7.
Underwater acoustic (UWA) communication based on an acoustic vector sensor is studied. The method of joint weighted sound pressure and velocity processing is used in phase modulation high-speed UWA communication system combined with coherent demodulation and adaptive equalization algorithm to demodulate and decode. Whereas the sound intensity could be used instead of pressure for frequency decoding in frequency modulation UWA communication system. The results of theory analysis, simulation calculations and lake trials have shown that either in phase modulation or in frequency modulation UWA communication system, the processing gain can be evidently increased, so that the BER (bit error rate) can be effectively reduced and the telemetry distance can be enlarged by using the acoustic vector sensor.  相似文献   

8.
In measuring acoustic field vector properties either complete or partial cancellation between ambient noise energy flux and the oppositely directed one, radiated, for instance, by tone or noise-shaped point source can be found. In that case there is no matter coherent or incoherent fields interact. The phenomenon of interest is named compensation of opposing energy fluxes. The paper is focused on interaction between vertical component of the surface noise energy flux and that of bottom-reflected noise-shaped interfering signal from on-water source in the deep open ocean. Bottom-reflected weak broadband interfering signal measures the extent of resultant compensation. As the vertical projection of the signal energy flux makes the interference maximum, its power appears to be comparable to that of the surface noise and complete compensation takes place at a given frequency. Once it is the interference minimum, just partial compensation can be found. No compensation was observed for co-directional energy fluxes.  相似文献   

9.
The splash sound of target's water entry is an instantaneous signal, consisting of impact component and bubble components. It is difficult to detect and estimate the azimuth of this signal by traditional azimuth estimation methods using a single vector sensor, especially when the SNR is low. Empirical mode decomposition is a nonlinear analysis method that can emphasize signals' instantaneous characteristic. In this paper, the pressure and particle velocities are decomposed into different intrinsic mode functions (IMF), and the MAIA (mode acoustic intensity averager) method can realize the instantaneous signals' detection and azimuth estimation. The lake experiment and sea trial results show that this method can decompose water-entry sound and ambient interference into different IMFs, so as to detect the starting time of water-entry sound signal and estimate its azimuth effectively.  相似文献   

10.
Sound pressure wave and particle velocity wave of the receiving theory of iner- tial sphere type vector hydrophone was studied. Based on measurement principle of particle velocity hydrophone with co-oscillating sphere, the mathematical expressions of sound wave receiving response to both rigid sphere and elastic sphere in a freely moving acoustic plane- wave field were derived, and the relationship between the frequency response curves of velocity hydrophone and its geometrical dimension and density was analyzed. In addition, according to sound wave receiving theory of spherical receiving transducer, the mathematical expression of the vector hydrophone's sound pressure receiving response was derived, and the laws of the pressure distribution on the surface of particle velocity hydrophone and relationships between the pressure receiving coefficient of the vector hydrophone and the parameters, such as the dimensions of the receiving surface, the radius of the particle velocity hydrophone, the layout position and radius of sound pressure hydrophone, were analyzed and calculated. The analysis method of sound wave receiving theory of vector hydrophone was established, which lays the theoretical foundation for design and development of the vector hydrophone.  相似文献   

11.
浅海环境中,确定性声源的多途声信号干涉使得接收点处声强流的方向发生改变,不再与声源位置处的声强流方向一致。只测量声场的标量声强时,无法得到接收点处声强流的垂直方向性,而基于简正波矢量场建模和仿真,可获得理想条件下宽带点声源激发声场声强流的垂直方向性。本文采用单矢量水听器进行海上实验,获得了海洋环境噪声和干扰条件下舰船噪声声强流的垂直方向性。仿真和实验结果表明:远场条件下,浅海干涉现象引起接收点处声强流的方向(极角)随频率和距离变化,其时间-频率分布呈现与LOFAR谱干涉条纹相似的条纹,声强流的极角值主要分布在70?~110?范围内。  相似文献   

12.
于梦枭  周士弘 《应用声学》2020,39(6):839-848
针对水平不变的浅海波导中单矢量传感器对低频宽带声源的三维被动定位问题,首先利用平均声强器估计声源方位;其次,通过分离简正模的声压和水平振速分量联合处理获得运动声源相对速度,进一步基于垂直声能流中简正模相干项特征频率不变性以及长时间窗口中多快拍信号的统一处理,建立WARPING变换频谱作为代价函数的搜索处理器,估计该段信号的初始距离,进而获得各时刻声源距离,所提出的方法避免了对拷贝声场和引导声源的依赖;最后,利用多阶简正模相干项与非相干项能量模基处理方法,当声场中存在三阶以上简正模时,可对声源深度进行匹配估计。仿真分析表明,单个矢量传感器能够给出声源的方位、距离及深度估计结果。  相似文献   

13.
Pekeris波导中简正波的复声强及其应用   总被引:4,自引:0,他引:4       下载免费PDF全文
余赟  惠俊英  赵安邦  孙国仓  滕超 《物理学报》2008,57(9):5742-5748
在Pekeris波导模型下,关注了简正波的矢量场,讨论了简正波水平复声强和垂直复声强的表述,并分析了其特征.单阶简正波在水平方向是行波,相应的水平复声强仅为有功的;在垂直方向为驻波,相应的垂直复声强仅为无功的.而多阶简正波相互干涉,因此总声场的复声强既有有功分量,也有无功分量,其中只有有功分量参与声能的输运,但无功分量是反映声场信息的重要组成部分.通过对垂直(交互)复声强无功分量和水平交互复声强有功分量的数值分析,对于甚低频率的点源声场,发现当声源深度变化时,上述声场分量的正负号呈有规变化,当接收传感器置 关键词: 目标深度分类 复声强 矢量场 Pekeris波导  相似文献   

14.
Acoustic intensity is a vector quantity described by collocated measurements of acoustic pressure and particle velocity. In an ocean waveguide, the interaction among multipath arrivals of propagating wavefronts manifests unique behavior in the acoustic intensity. The instantaneous intensity, or energy flux, contains two components: a propagating and non-propagating energy flux. The instantaneous intensity is described by the time-dependent complex intensity, where the propagating and non-propagating energy fluxes are modulated by the active and reactive intensity envelopes, respectively. Properties of complex intensity are observed in data collected on a vertical line array during the transverse acoustic variability experiment (TAVEX) that took place in August of 2008, 17 km northeast of the Ieodo ocean research station in the East China Sea, 63 m depth. Parabolic equation (PE) simulations of the TAVEX waveguide supplement the experimental data set and provide a detailed analysis of the spatial structure of the complex intensity. A normalized intensity quantity, the pressure-intensity index, is used to describe features of the complex intensity which have a functional relationship between range and frequency, related to the waveguide invariant. The waveguide invariant is used to describe the spatial structure of intensity in the TAVEX waveguide using data taken at discrete ranges.  相似文献   

15.
An underwater acoustic intensity sensor is described. This sensor derives acoustic intensity from simultaneous, co-located measurement of the acoustic pressure and one component of the acoustic particle acceleration vector. The sensor consists of a pressure transducer in the form of a hollow piezoceramic cylinder and a pair of miniature accelerometers mounted inside the cylinder. Since this sensor derives acoustic intensity from measurement of acoustic pressure and acoustic particle acceleration, it is called a p-a intensity probe. The sensor is ballasted to be nearly neutrally buoyant. It is desirable for the accelerometers to measure only the rigid body motion of the assembled probe and for the effective centers of the pressure sensor and accelerometer to be coincident. This is achieved by symmetric disposition of a pair of accelerometers inside the ceramic cylinder. The response of the intensity probe is determined by comparison with a reference hydrophone in a predominantly reactive acoustic field.  相似文献   

16.
The results of studies of the scalar and vector energy characteristics of a real acoustic interference field in a shallow sea are presented based on notions of monochromatic fields and common field vector ratios. The importance of the quantities under consideration is that they are the components of the energy-pulse tensor of the acoustic field. The horizontal components of the complex intensity vector are represented only by its real parts, i.e., the imaginary parts of the horizontal components of the intensity vector are equal to zero; the vertical component has both real and imaginary parts. The imaginary part of the vertical component of the complex intensity vector is related to the interference field of acoustic pressure (the potential energy). The energy characteristics of the acoustic field in a shallow sea obtained during a real experiment correspond to the common theoretical field ratios.  相似文献   

17.
Statistical characteristics of an acoustic field that are based on the data of simultaneous measurements of pressure and acoustic velocity vector are investigated. Conditions of the formation of vector-phase characteristics of acoustic field are formulated in relation to the dispersion properties of the medium. Crosscorrelation functions of the components of the vector field are presented. Expressions for the characteristic functionals of vector-phase relationships in acoustic fields and, in particular, for the acoustic energy flux are derived with the use of functional methods. Algorithms of space-time processing of the energy flux vector and the optimum measurement algorithm for a Gaussian vector-phase field are considered. The signal-to-noise ratio is determined as the quality index of vector reception algorithms, and its relation to the corresponding parameter of scalar pressure field measurements is revealed. Indices of relative efficiency of vector algorithms are determined depending on the dispersion characteristics of the medium (the flux algorithm) and the dimension of the input vector of observations (the optimum algorithm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号