首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Synthesis of GaN Nanorods by Ammoniating Ga2O3/ZnO Films   总被引:1,自引:0,他引:1       下载免费PDF全文
Large quantities of CaN nanorods are successfully synthesized on Si(111) substrates by ammoniating the films of Ga2O3/ZnO at 950℃ in a quartz tube. The structure, morphology and optical properties of the as-prepared CaN nanorods are studied by x-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, and photoluminescence. The results show that the CaN nanorods have a hexagonal wurtzite structure with lengths of several micrometres and diameters from 80 nm to 300hm, which could supply an attractive potential to harmonically incorporate future GaN optoelectronic devices into Si-based large-scale integrated circuits. The growth mechanism is also briefly discussed.  相似文献   

2.
Indium nanorods are grown on silicon substrates by using magnetron-sputtering technique. Film morphologies and nanorod microstructure are investigated by using scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), and x-ray diffraction. It is found that the mean diameter of the nanorods ranges from 30nm to 100nm and the height ranges from 30nm to 200nm. The HRTEM investigations show that the indium nanorods are single crystals and grow along the [100] axis. The nanorods grow from the facets near the surface undulation that is caused by compressive stress in the indium grains generated during grain coalescence process. For low melting point and high diffusivity metal, such as bismuth and indium, this spontaneous nanorod growth mechanism can be used to fabricate nanostructures.  相似文献   

3.
We report a new method for large-scale production of GaMnN nanobars, by ammoniating Ga2O3 films doped with Mn under flowing ammonia atmosphere at 1000oC. The Mn-doped GaN sword-like nanobars are a single-crystal hexagonal structure, containing Mn up to 5.43 atom%. Thickness is about 100 nm and with a width of 200-400 nm. The nanobars are characterized by x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy and photoluminescence. The GaN nanobars show two emission bands with a well-defined PL peak at 388 nm and 409 nm respectively. The large distinct redshift (409 nm) are comparable to pure GaN(370 nm) at room temperature. The red-shift photoluminescence is due to Mn doping. The growth mechanism of crystalline GaN nanobars is discussed briefly.  相似文献   

4.
This paper reports that/3-Ga2O3 nanorods have been synthesized by ammoniating Ga2O3 films on a V middle layer deposited on Si(111) substrates. The synthesized nanorods were confirmed as monoclinic Ga2O3 by x-ray diffraction,Fourier transform infrared spectra. Scanning electron microscopy and transmission electron microscopy reveal that the grown β-Ga2O3 nanorods have a smooth and clean surface with diameters ranging from 100 nm to 200 nm and lengths typically up to 2μm. High resolution TEM and selected-area electron diffraction shows that the nanorods are pure monoclinic Ga2O3 single crystal. The photoluminescence spectrum indicates that the Ga2O3 nanorods have a good emission property. The growth mechanism is discussed briefly.  相似文献   

5.
Flower-shape clustering GaN nanorods are successfully synthesized on Si(111) substrates through ammoniating Ga2O3/ZnO films at 950℃. The as-grown products are characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), field-emission transmission electron microscope (FETEM), Fourier transform infrared spectrum (FTIR) and fluorescence spectrophotometer. The SEM images demonstrate that the products consist of flower-shape clustering GaN nanorods. The XRD indicates that the reflections of the samples can be indexed to the hexagonal GaN phase and HRTEM shows that the nanorods are of pure hexagonal GaN single crystal. The photoluminescence (PL) spectrum indicates that the GaN nanorods have a good emission property. The growth mechanism is also briefly discussed.  相似文献   

6.
Fabrication of Syringe-Shaped GaN Nanorods   总被引:1,自引:0,他引:1       下载免费PDF全文
Syringe-shaped GaN nanorods are synthesized on Si(111) substrates by annealing sputtered Ga2O3/BN films under flowing ammonia at temperature of 950℃. Most of the nanorods consist of a main rod and a top needle, looking like a syringe. X-ray diffraction and selected-area electron diffraction confirm that the syringe-shaped nanorods are hexagonal wurtzite GaN. Scanning electron microscopy and high-resolution transmission electron microscopy reveal that these nanorods are as long as several micrometres, with diameters ranging from 100 to 300nm. In addition to the BN intermediate layer, the proper annealing temperature has been demonstrated to be a crucial factor for the growth of syringe-shaped nanorods by this method.  相似文献   

7.
We report on ZnO nanosheets and nanorods synthesized by thermal oxidation of zinc films deposited on carbon fiber surfaces. The structure and optical properties are characterized by x-ray diffraction, scanning electron microscopy and photoluminescence spectrum. An orange-red emission around 683 nm is found in the PL spectrum when the sample prepaxs at 400℃ for four hours in air. With annealing temperature increasing from 400℃ to 500℃, the blue shift is observed.  相似文献   

8.
Prefer-oriented and fine grained polycrystalline GaN films are prepared by plasma enhanced metal organic chemical vapour deposition on nucleation surfaces of freestanding thick diamond films. The characteristics of the GaN films are characterized by x-ray diffraction, reflection high energy electron diffraction and atomic force microscopy. The results indicate that the structure and morphology of the films are strongly dependent on the deposition temperature. The most significant improvements in morphological and structural properties of GaN films are obtained under the proper deposition temperature of 400°C.  相似文献   

9.
A novel fishing rod-shaped GaN nanorod is successfully fabricated through a new method by using the two-step growth technology. This growth method is applicable to continuous synthesis and is able to produce a large number of single-crystalline GaN nanorods with a relatively high purity and at a low cost. X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy are used to characterize the as- synthesized nanorods. The results show that most of the nanorods consist of a main rod and a top curved thread. It is single-crystal GaN with hexagonal wurtzite structure. The representative photoluminescence spectrum at room temperature exhibits a strong UV light emission band centered at 370.8nm. Furthermore, a possible two-stage growth mechanism of the fishing rod-shaped GaN nanorod is also briefly discussed.  相似文献   

10.
Nickel particles with submicron size are prepared by using the solvothermal method. These spheres are then coated with a layer of MnO2 using the soft chemical method. The microstructure is characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Energy x-ray dispersive spectrometry and high-resolution images show that the granular composites have a classical core/shell structure with an MnO2 superficial layer,no more than 10 nm in thickness. The hysteresis measurements indicate that these submicron-size Ni composite powders have small remanence and moderate coercivity. The electromagnetic properties of the powders measured by a vector network analyzer in a frequency range of 2-18 GHz are also reported in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号