首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
提出了一种利用多模耦合实现低频、宽带、大功率特性的新结构Ⅲ型弯张换能器。通过在压电陶瓷堆内部嵌入与凹型弯张壳体相连的弹性辅助弯曲梁结构,并用弯曲圆盘作为顶部自由端盖,增加有效工作模态。利用有限元方法对换能器进行了设计优化,分析结果显示换能器在低频段存在4个主要工作模态。根据优化结果,加工制作了换能器样机,水池实验的测试结果表明:在1.5~5.5 kHz范围内,换能器样机的发送电压响应均大于135 dB;1.5~4 kHz内的最大发送电压响应大于142 dB,响应起伏小于6 dB。研究结果表明自由端盖Ⅲ型弯张换能器不仅能够在小尺寸设计下实现大功率工作,还能获得低频宽带发射性能。   相似文献   

2.
长轴加长型宽带弯张换能器   总被引:3,自引:1,他引:2  
Ⅳ型弯张换能器的机械品质因数较高,带宽不宽.为改善其带宽性能,在椭圆管形弯张壳体的基础上,利用多模态耦合的原理,提出了一种长轴加长型弯张换能器.以新型弛豫铁电单晶铌镁酸铅—钛酸铅(PMNT)为驱动材料,利用有限元软件ANSYS对弯张换能器进行了设计分析并制作了换能器样机.测量得到在1.6~16 kHz的频率范围内,换能器的最大发送电压响应136 dB,响应起伏7.8 dB.理论分析与实验结果表明,与Ⅳ型弯张换能器相比,长轴加长型弯张换能器在保持频率低,响应高等优点的同时,显著拓宽了弯张换能器的带宽.  相似文献   

3.
李宽  蓝宇  周天放 《声学学报》2016,41(6):843-850
四边型弯张换能器通常工作带宽较窄,为了提高带宽性能,对四边型弯张换能器振动及辐射特性进行了研究,重点分析壳体结构参数对换能器发送电压响应的影响。根据分析结果提出了拓宽换能器工作带宽的方法,利用有限元软件进行了仿真计算并制作了四边型弯张换能器样机。测量得到在2.4~5 kHz的频率范围内,换能器的最大发送电压响应值达到140 dB,带内起伏4 dB,有限元仿真结果与实验结果吻合较好。研究结果表明设计的四边型弯张换能器不仅能够低频工作,并且可以在小尺寸下实现大功率发射,同时还具备宽带发射特性。   相似文献   

4.
在具有高阶形式的广义压电方程基础上,讨论掺镧改性锆锡钛酸铅PbLa(Zr,Sn,Ti)O3(PLZST)反铁电相变陶瓷的非线性机电耦合问题,得到类似传统线性压电方程的近似线性电致伸缩方程,给出了一种解决非线性反铁电相变陶瓷换能器电声转换问题的分析方法,即在直流偏置状态下对PLZST反铁电相变陶瓷的材料参数进行近似线性等效化处理进而分析换能器的电声转换问题.在此基础上,研制了水中谐振频率1.1 kHz新型反铁电相变陶瓷低频弯张换能器.湖上试验结果表明,与同结构同尺寸压电陶瓷弯张换能器相比,目前反铁电换能器样品的发射电压响应约高3dB,声源级高出9dB,并验证了本文所提出的分析非线性反铁电相变陶瓷换能器方法的正确性.  相似文献   

5.
研究了一种将多个椭圆弯张壳体在短轴方向进行机械叠合的超低频弯张换能器,每个弯张壳体采用超磁致伸缩材料进行驱动。推导了多个叠合壳体的等效电路,利用支路阻抗方法得到了换能器频率和阻抗的方程表达式。针对多个壳体叠合的结构复杂性,采用有限元方法计算并分析了叠合壳体换能器的多个结构点的振动位移分布,通过平动位移分布设计了活塞辐射面的结构参数。将有限元方法计算的换能器在空气中和水中的谐振频率与等效电路法计算的结果进行了对比,符合较好。研制了6个壳体叠合的超低频弯张换能器样机,换能器外形尺寸为Φ230×630 mm,重量为39 kg。换能器经湖上试验,水中谐振频率130 Hz,最大发送电流响应161.1 dB,最大发射声源级为180.4 dB,实现了超低频、小尺寸的发射能力。   相似文献   

6.
声管测量系统的宽带复合型换能器   总被引:1,自引:0,他引:1  
提出了一种纵向换能器与Ⅳ型弯张换能器相结合的复合型换能器,推导了换能器的等效电路,根据等效电路分析了纵向换能器和弯张换能器之间的耦合作用;应用有限元方法进行了结构优化,使换能器能够发射较高频率声波的同时兼顾低频发射.研制了宽带复合型换能器实验样机,对在声管中所建立的驻波声场特性进行了实验研究,并成功利用该脉冲声管系统进...  相似文献   

7.
研究了一种具有管状叠堆结构的圆管换能器,其敏感元件是由纵向极化压电陶瓷单元组成的薄壁管状压电叠堆,探讨利用管状叠堆纵向和径向振动耦合实现宽带发射。利用压电柱壳振动理论推导了管堆的频率方程,分析了换能器的纵向和径向模态的振动耦合特性。在理论分析的基础上利用有限元方法对换能器的带宽和发射电压响应进行优化并研制换能器样机。测试结果表明,纵向极化的管状压电叠堆结构具有良好的发射电压响应和宽带特性,与理论及仿真结果相符。  相似文献   

8.
提出一种具有水平无指向性、低频、宽带、大功率特点的新结构换能器——“星型”柱面发射换能器,换能器由共享后质量块的6个复合棒换能器按“星型”方式组成柱面结构。采用有限元方法对换能器进行了分析设计并制作了换能器样机。在1—10 kHz内,换能器有3个主要工作模态,前两阶工作模态对换能器工作带宽的展宽有贡献,第三阶模态显示出较强的指向性,水池测试换能器具有1倍频程的工作带宽,最大声源级为199.1 dB。有限元模拟结果和实验结果符合较好。研究结果表明,新结构换能器在满足水平无指向性的前提下,利用复合棒的纵振及辐射面的弯曲振动实现了低频、宽带、大功率的要求,提供了一种设计该特性换能器的新思路。   相似文献   

9.
管梁耦合宽带换能器   总被引:4,自引:0,他引:4       下载免费PDF全文
对一种管梁耦合宽带换能器进行了研究,通过在圆环换能器中加入弯曲梁组成管梁耦合结构,增加有效工作模态,利用多模谐振耦合优化设计,可使换能器的工作带宽向低频大幅扩展.理论计算与实测结果均表明,管梁耦合换能器具备频带宽、功率大、尺寸小、深水性能好等特点,兼具圆环换能器与弯张换能器的优势,工作性能优良,设计灵活多变.   相似文献   

10.
800Hz Terfenol-D鱼唇式弯张换能器   总被引:6,自引:4,他引:2       下载免费PDF全文
本文研制了800Hz Terfenol-D鱼唇式弯张换能器,换能器设计中采用永磁偏磁场和能有效抑制涡流损耗的闭合磁路结构,最高声源级185dB,-3dB带宽180Hz,这种鱼唇工弯张换能器克服了连续直流提供偏磁场时发热强的缺点,并且仅需要普通的功率放大器,更适于长时间连续工作,使这一新型低频大功率水声换能器趋于实用化。  相似文献   

11.
为了降低纵向换能器尺寸并提高发射带宽和发送电压响应,研究了一种弛豫铁电单晶/压电陶瓷混合激励换能器,换能器由[011]方向极化PIN-PMN-PT单晶和PZT-4压电陶瓷混合激励,利用多模态振动耦合的原理,通过单晶的32模式振动,可以灵活调整两种振子之间的驱动能力和刚度分配。首先通过四端网络法得到了换能器等效电路并计算了其谐振频率,然后利用有限元方法对换能器进行了仿真优化,最后制作了试验样机并进行了测试分析。换能器样机外径86 mm、长度80 mm,工作频带13~38 kHz,最大发送电压响应为144.9 dB,带内发送电压响应起伏小于6 dB,具有良好的宽带、小尺寸工作性能。  相似文献   

12.
双激励全波长压电陶瓷超声换能器工作特性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
对由两个半波长夹心式压电陶瓷换能器级联而成的双激励全波长压电陶瓷超声换能器进行了研究,给出了这种换能器优值的相关参量表达式,通过数值计算分析了该换能器的结构和材料参数对其特性的影响。研究结果表明,当两组压电陶瓷堆分别位于各自所在半波长换能器的位移节点,或者在压电陶瓷片数量确定情况下两组压电陶瓷堆的片数相同时,换能器均能得到最大的优值;在相当大的范围内增加压电陶瓷片的数量,换能器的优值稍有降低,但力因子迅速增大;金属块材料对换能器的优值影响甚微。可见双激励全波长换能器能在不明显降低换能器综合性能的情况下有效增加压电陶瓷的体积,因而可大幅提高换能器的功率容量和负载能力,更适用于大功率重负载的场合。   相似文献   

13.
高性能环境友好型无铅压电陶瓷及其应用是当前压电材料研究的热点之一,为了探究其在水声换能器领域的应用潜力,该文对铌酸钾钠基无铅压电陶瓷和锆钛酸铅压电陶瓷纵振式换能器进行了对比研究。依据仿真结果优化结构尺寸,制作了两种换能器样机并测试了其在空气中和水中的电声性能。测试结果表明,铌酸钾钠基无铅压电陶瓷换能器的谐振频率为35kHz,最大发送电压响应为 151dB,声源级可达 190dB,在 26kHz~67kHz 的频率范围内发送电压响应的起伏不超过±4.5dB,谐振频率处-3dB 的指向性开角约为 76°。该无铅压电陶瓷换能器具有和锆钛酸铅压电陶瓷换能器相当的发射性能,有望推动无铅压电材料在水声换能器领域的应用进程。  相似文献   

14.
首次分析了磁致伸缩换能器各组件有限单元中的能量关系,由此导出了磁致伸缩换能器有限元设计的动力学方程;计算了Ⅶ型弯张换能器壳体及弯张换能器的振动模态,指出在诸模态中存在一呼吸模式,技能器若是工作在这一呼吸模式上,将能获得较大的体积速度及较高的声源级。  相似文献   

15.
陈诚  林书玉 《物理学报》2021,(1):341-351
本文提出了一种基于2-2型压电复合材料的新型宽频带径向振动超声换能器,它主要由内金属圆环和外压电陶瓷复合材料圆环组成.首先利用Newnham串并联理论和均匀场理论推导了2-2型压电复合材料的等效参数;其次利用解析法得到了金属圆环和径向极化压电复合陶瓷圆环径向振动的机电等效电路;最后得到了换能器的六端机电等效电路,从而得到了换能器的频率方程.接着分析了换能器共振频率和反共振频率以及有效机电耦合系数与几何尺寸、两相体积占比的关系,采用仿真软件对新型换能器的径向振动进行了数值模拟.结果表明,利用解析法得到的共振频率和反共振频率与数值模拟结果吻合较好.此外,对换能器在水下的辐射声场进行了仿真研究,结果表明新型复合材料径向换能器相比传统纯陶瓷径向换能器,发射电压响应幅值更大,工作带宽提高接近一倍,声匹配更佳.  相似文献   

16.
双壳嵌套鱼唇式弯张换能器   总被引:3,自引:1,他引:2       下载免费PDF全文
刘永平  莫喜平  柴勇  张运强  崔斌 《声学学报》2019,44(6):1060-1067
研究了一种双壳嵌套鱼唇式弯张换能器,针对特殊结构的空气背衬弯张换能器提出了表征换能器静压形变的系列参数,利用有限元方法研究了这些参数与结构参数的对应关系,并进行了换能器的静态分析。在静态分析基础上,研究了结构参数对换能器声辐射特性的影响,经对比分析得到换能器的优化方案,研制了实验样机,经外场试验验证了双壳嵌套鱼唇式弯张换能器具有小尺寸、频率低、高效率、大功率的工作特性:谐振频率800 Hz、最大声源级199.5 dB、电声效率23.6%、工作深度200 m。   相似文献   

17.
复合液腔高灵敏度水听器   总被引:1,自引:0,他引:1  
探索新的换能器结构是提高换能器性能的主要途径之一。设计了一种利用液腔结构提高接收灵敏度的水听器,称为复合液腔水听器。该水听器用压电陶瓷圆管作为敏感材料,并将其放在一个底部开孔的金属圆桶内。在流体中,开孔圆桶形成两个频率不同的液腔谐振模态,并与压电陶瓷圆管的径向谐振模态衔接在一起,形成具有一定带宽的高接收灵敏度频段。采用有限元方法对水听器进行了优化设计并研制了水听器样机。水池测试结果表明,该水听器样机在1.5 k Hz~11.5 k Hz频率范围内灵敏度保持在-185 d B以上,比传统的压电陶瓷圆管水听器结构具有显著优势。  相似文献   

18.
多谐振宽带Janus-Ring换能器   总被引:1,自引:0,他引:1  
孙淑珍  李俊宝 《声学学报》2019,44(4):743-750
提出了一种多谐振宽带Janus-Ring换能器,两个一定距离的压电圆环换能器(Ring换能器)嵌套在双面纵振Janus换能器的两端,Ring换能器的径向振动、Janus换能器的纵振动与它们中间形成的Helmholtz液腔振动相耦合,可大大拓展换能器的工作带宽。使用有限元方法设计并研制了Janus-Ring换能器样机,经测试在1.8~8.0 kHz范围内,样机最大发射电压响应144 dB,起伏小于6 dB。相比传统的Janus-Helmholtz换能器,Janus-Ring换能器有效拓展了工作频带,增大了发射电压响应,减小了频带内的发射电压响应起伏。   相似文献   

19.
磁致伸缩-压电联合激励凹筒型发射换能器   总被引:3,自引:2,他引:3  
柴勇  莫喜平  刘永平  崔政 《声学学报》2006,31(6):523-526
设计制作了一种新型磁致伸缩-压电联合激励凹筒型发射换能器,采用稀土超磁致伸缩材料Terfenol-D与PZT压电陶瓷作为联合激励元件,模拟计算与实测结果均表明,与采用单一振子激励的凹筒型发射换能器相比,此种新型换能器在保持尺寸小、频率低等优点的同时,显著拓宽了工作频带并提高了辐射声功率.换能器外型尺寸为φ88 mm×316 mm,水中谐振频率1.30 kHz,-3 dB带通Q值1.43,谐振频率下发射电压响应级135.1 dB.  相似文献   

20.
惠辉  王宏伟  荣畋 《应用声学》2022,41(6):998-1003
研制了一种嵌套式高频宽带复合材料换能器,利用1-3型压电复合材料Q值较低、频带较宽的特点,采用组合式的结构拓展换能器的工作带宽。通过切割框型压电陶瓷、灌注环氧树脂得到压电复合材料框型敏感元件,再将不同厚度的框型敏感元件沿轴向嵌套从而制成多层嵌套的压电复合材料敏感元件。建立1-3型压电复合材料中压电小柱的等效电路,根据等效电路计算出压电小柱的谐振频率,并与1-3型压电复合材料的谐振频率理论计算结果进行对比。通过ANSYS软件对敏感元件结构进行仿真,并根据仿真结果确定了敏感元件的最佳设计方案。最终制作出的换能器进行水下测试,该换能器的谐振频率为310kHz,最大发送电压响应为188.5dB,-3dB带宽可达130kHz,接收灵敏度最大可达-186.8dB,-3dB带宽可达90kHz,谐振频率处-3dB的指向性开角约为2.4°。该嵌套式敏感元件可实现换能器宽带发射与接收声波的目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号