首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Body stress flow can be expected in the fast ignition imploding of the inertial fusion process that strongly damps small‐scale velocity structures. The Weibel instability is one of the plasma instabilities that require anisotropy in the distribution function. The body stress effect was neglected in the calculation of the Weibel instability growth rate. In this article, the propagation condition of impinging waves and the growing modes of the Weibel instability on the plasma density gradient of the fuel fusion with the body stress flow are investigated. Calculations show that the minimum value of the body stress rate threshold in the linear polarization is about 2.96 times greater than that of the circular polarization. Increasing 10 times of the density gradient and decreasing 2 times of the wavelength in the linear polarization and the circular polarization, respectively, lead to about 1.78 × 106 times increment and 0.019 times decrement in the maximum of the Weibel instability growth rate. Also, the Weibel instability growth rate maximum in the circular polarization is about 107 times greater than that of the linear polarization. The body stress flow and the density gradient tend to stabilize the Weibel instability in the circular polarization and act as a destabilizing source in the linear polarization. Therefore, by increasing steps of the density gradient plasma near the relativistic electron beam‐emitting region, in the circular polarization, the Weibel instability occurs at a higher stress flow.  相似文献   

2.
The Weibel instability plays an important role in stopping hot electrons and energy deposition mechanism in fast ignition of inertial fusion process. In this paper, the ion Weibel instability in counter propagating electron‐ion plasmas is investigate. The obtained results show that the growth rate of Weibel instability will be decreased about 40% with the anisotropy velocity as vxe = 2vze = 20; the ion density ratio, b = n 0i 1/n 0i 2, and density gradient, are increasing 50 and 90% respectively. The ion streaming in density gradient of dense plasma leads to increasing the Weibel instability growth rate and its amplification through ion streaming in the large wavenumber. The maximum unstable wavenumber has been decreased with decreasing the ion beam density ratio. For fixed ion density ratio, increasing 90% of the density gradient in the near of fuel plasma corona leads to reducing growth rate and unstable wavenumber about 43 and 42% respectively.  相似文献   

3.
In this paper, the Coulomb collisional effect of electron-ion on the growth rate of Weibel instability is investigated based on the semi-relativistic Maxwellian distribution function in dense and unmagnetized plasma. An analytical expression was derived for the dispersion relation of Weibel instability for two limit cases [ξ = ω'/k‖T‖ 〉〉 1 and |ξ| 〈〈 1. In limit |ξ| 〉〉 1 the dispersion relation only includes a real part and in limit |ξ| 〈〈 1 the imaginary part of the frequency of waves' instability plays a role in the dispersion relation. In limit |ξ| 〈〈 1, the two quantities μ and η, that are due to the relativistic and collisional effects, will appear in the growth rate of Weibel instability. The growth rate of Weible istability will be increased through decreasing the Coulomb collisional frequency and also increasing the temperature anisotropic parameter in strong relativistic limit.  相似文献   

4.
The Weibel instability increment is analytically derived for plasma produced at the barrier-suppression ionization of atoms and atomic ions by a superintense femtosecond laser pulse. The cases of linear and circular polarization are considered. Relativistic effects are discussed. It is found that the instability increment is larger for the circular polarization than for the linear polarization. This increment can attain the plasma frequency. Barrier-suppression ionization decreases the increment compared with the case of tunneling ionization. Relativistic effects also decrease the value of the increment. Estimates of the produced maximum quasistatic magnetic field are given.  相似文献   

5.
The filamentation instability is one of the basic beam-plasma instabilities that play a significant role in the energy deposition mechanism of the relativistic electrons generated by the laser-plasma interaction in the fast ignition scenario. In this paper, the effect of the density gradient into plasma on the filamentation instability was investigated in the Weibel unstable plasma, where the plasma temperature anisotropy can play an important role. Results indicated that the density gradient enhances the instability growth rate so that decreasing the density gradient from the critical surface to the core of fuel leads to instability for longer regions in k space. Also, investigations in the region close to the critical surface showed that for decreasing the beam number density nb ≤ 0.01n0, the instability occurs for while this can be different for higher values. Increasing the beam relativistic factor causes a decreasing peak of instability growth rate because of a reduction in beam current, whereas the initial thermal spread of plasma amplifies the filamentation instability.  相似文献   

6.
S BELGHIT  A SID 《Pramana》2016,87(6):96
In this work, the Weibel instability due to inverse bremsstrahlung absorption in laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by Weibel instability with the laser wave field is explicitly showed. The main result obtained in this work is that the inclusion of self-generated magnetic field due to Weibel instability to the inverse bremsstrahlung absorption causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes. This decrease is accompanied by a reduction of two orders in the growth rate of instability or even stabilization of these modes. It has been shown that the previous analyses of the Weibel instability due to inverse bremsstrahlung have overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the Weibel instability due to inverse bremsstrahlung should not affect the experiences of an inertial confinement fusion.  相似文献   

7.
We have studied the features of formation and the possible stationary structures of a self-consistent magnetic field in a relativistic collisionless plasma, which are characteristic of a simple geometry of the Weibel instability that is well known in the nonrelativistic case. The universal condition is established, the growth rate is determined, and the criteria of saturation of the Weibel instability are analyzed for a broad class of anisotropic particle distribution functions (for definiteness, in application to an electron-positron plasma). A nonlinear equation of the Grad-Shafranov type describing the potential current structures is derived and its solutions are analytically studied. Special attention is paid to spatially harmonic, nonlinear current configurations with parameters determined by the properties of the initial homogeneous plasma subject to the Weibel instability. It is demonstrated that the magnetic field energy density in the obtained solutions (both harmonic and nonharmonic) can be comparable with the kinetic energy density of plasma particles.  相似文献   

8.
<正>Solid-state fuel ignition was given by Chu and Bobin according to the hydrodynamic theory at x = 0 qualitatively. A high threshold energy flux density,i.e.,E* = 4.3×1012 J/m2,has been reached.Recently,fast ignition by employing clean petawatt-picosecond laser pulses was performed.The anomalous phenomena were observed to be based on suppression of prepulses.The accelerated plasma block was used to ignite deuterium-tritium fuel at solid-state density. The detailed analysis of the thermonuclear wave propagation was investigated.Also the fusion conditions at x≠0 layers were clarified by exactly solving hydrodynamic equations for plasma block ignition.In this paper,the applied physical mechanisms are determined for nonlinear force laser driven plasma blocks,thermonuclear reaction,heat transfer, electron-ion equilibration,stopping power of alpha particles,bremsstrahlung,expansion,density dependence,and fluid dynamics.New ignition conditions may be obtained by using temperature equations,including the density profile that is obtained by the continuity equation and expansion velocity.The density is only a function of x and independent of time.The ignition energy flux density,Et*,for the x≠0 layers is 1.95×1012 J/m2.Thus threshold ignition energy in comparison with that at x = 0 layers would be reduced to less than 50 percent.  相似文献   

9.
A. Kendl 《Physics letters. A》2011,375(35):3138-3141
A semi-classical nonlinear collisional drift wave model for dense magnetized plasmas is developed and solved numerically. The effects of fluid electron density fluctuations associated with quantum statistical pressure and quantum Bohm force are included, and their influences on the collisional drift wave instability and the resulting fully developed nanoscale drift wave turbulence are discussed. It is found that the quantum effects increase the growth rate of the collisional drift wave instability, and introduce a finite de Broglie length screening on the drift wave turbulent density perturbations. The relevance to nanoscale turbulence in nonuniform dense magnetoplasmas is discussed.  相似文献   

10.
相对论电子束在等离子体中的能量沉积   总被引:1,自引:0,他引:1       下载免费PDF全文
 用3维粒子模拟程序LARED-P研究了束-等离子体不稳定性, 不稳定性激发的强电磁场使电子束在非常短的距离内沉积能量。对于10 MeV的单能电子束,束电子数目占总电子数目5%的情况下,最终约损失14%的束能量。推导了等离子体的色散关系,得出了增长率。  相似文献   

11.
《Physics letters. A》2020,384(25):126462
The effects of dust charge gradient (DCG) force and polarization force have been investigated on the properties of dust acoustic wave (DAW) and linear Jeans instability in strongly coupled dusty plasma. In the kinetic regime, DCG and polarization forces modify the DAW mode and couple with compressional viscoelastic wave mode. The Jeans instability criterion and critical wavenumber have been modified due to DCG force, polarization force and strong coupling effects. The results have been discussed in the warm photodisassociation region and in the laboratory complex plasmas. The strong correlation effect and the charge variation parameter stabilize the growth rate of Jeans instability. But, the polarization parameter stabilize the growth rate for positively charged dust grains and destabilize for negatively charged dust grains. The implications of charge gradient and polarization parameters are discussed for lower and higher charges in the laboratory complex plasma which decreases the growth of the propagating DAW.  相似文献   

12.
In this study, we present linear analysis of electrostatic counter-streaming instability in spin-polarized electron–positron–ion (e-p-i) plasma. With the aid of the separate spin evolution-quantum hydrodynamic (SSE-QHD) model, we derive the dispersion relation of counter-streaming instability. We numerically solve the dispersion and find four wave solutions: Langmuir wave, positron acoustic mode, and two electron and positron spin-dependent waves. It is noted that coupling of streaming and spin effects excites Langmuir instability and positron acoustic mode instability. However, in the absence of spin effect, only Langmuir instability will survive in e-p-i plasma. We have also discussed the effects of positron concentration, streaming speed, and spin polarization on the real frequency of waves and the growth rate. The present study may be helpful for understanding longitudinal wave propagation and instabilities in dense magnetized environments.  相似文献   

13.
Lower hybrid (LH) wave instability excited due to an electron beam in a spin‐polarized degenerate plasma is studied. Using the Separate Spin Evolution quantum hydrodynamic model, incorporating Coulomb exchange interaction and Bohm potential, the general dispersion relation of nearly perpendicular propagating electrostatic waves is derived. Furthermore, in the low‐frequency limit, the dispersion of LH wave is obtained. It is found that the electron spin polarization and beam streaming speed reduce the growth rate as well as the k‐domain. However, the beam density and the propagation angle enhance both the growth rate and k‐domain of LH instability. In addition, the contribution of the Bohm potential term increases the intensity of the growth rate. All these effects may have a strong bearing on the wave and instability phenomena in spin‐polarized plasmas.  相似文献   

14.
水下物体激光圆偏振成象实验及与线偏振成象的比较   总被引:2,自引:0,他引:2  
曹念文 《光子学报》1998,27(6):568-572
采用波长532nm激光作光源,面阵CCD作探测器,利用圆偏振技术进行水下物体成象实验研究,对实验结果进行了分析并与线偏振成象技术进行了比较。结果表明无论是采用圆偏振技术还是线偏振技术都可提高水下物体成象的衬比(度)和成象距离;水体较清时圆偏振成象清晰度远远大于线偏振成象清晰度;当水体较混时,圆偏振成象清晰度大大下降和线偏振成象效果相接近。  相似文献   

15.
In this paper, a metastructure multifunctional device for circular-to-linear polarization conversion (PC) and perfect absorption is proposed in which the electrical conductivity of the silicon material is controlled by light, thus changing the function of the device. The paper also explores three methods of optimizing bandwidth and their mechanisms, which are analyzed by means of current and energy density diagrams. The unit structure of this device adopts a 2 × 2 array, which is used for differentiated reflection of circular polarization waves, and forms linear polarization waves after reflection. In the other state, ultrawideband absorption can be achieved by changing the conductivity of silicon by external optical pumping, and the bandwidth is widened by inserting air resonators. In general, the device can form a PC at 0.89–1.31 THz with a relative bandwidth of 38% when there is no illumination. The resulting linear polarization wave has an axial ratio greater than 19 dB. When the silicon is excited by light resulting in a stable conductivity of around 9000 S m−1, the absorption band is 0.89–2.01 THz, the relative bandwidth is 77%, and the absorption rate is above 90%. This device can be used for communication, electromagnetic cloaking, and modulation.  相似文献   

16.
The plasma block (piston) with pressure P 1 is generated as a result of the nonlinear (ponderomotive) force in laser–plasma interaction. The plasma block can be used for the ignition of a fusion flame front in a solid density deuterium–tritium (DT) target by compressing the fuel that creates an ion shock propagating with velocity u ion? shock in the inside of a solid DT target. The ignition is achieved by creating an ion shock during the final stages of the implosion. We estimated the effect of an ion shock in solid DT target at an early stage with no compression and at the last stage with compression, where density increases by a factor of solid-state density. According to the theoretical model, a large target with a very thin layer of fuel (high-aspect ratio target) would be ideal to obtain the very strong shocks. Results indicate that the maximum compression even by an infinitely strong single shock can never produce more than four times the initial density of DT fuel. The results reported that the threshold ignition energy in a solid DT target is reduced by a factor of 4.  相似文献   

17.
The reflection of an electromagnetic pulse by a nonequilibrium plasma in which the development of Weibel instability is possible has been studied. An exponentially strong amplification of the reflected signal at the stage of instability development has been found to be possible. The amplification maximum takes place at a radiation frequency comparable to the instability growth rate. A nonequilibrium plasma is shown to be a generator of radiation even after the switch-off of the incident pulse. The described effect of amplification of the reflected signal points, in particular, to a new possibility in mastering the terahertz frequency band.  相似文献   

18.
The damage morphology of germanium surfaces using femtosecond laser pulses of various fluences and number of pulses is reported. The single pulse damage threshold in the present experiment was 9.7±4.0×10−13 W/cm2. The experimental threshold value was compared with theory, considering the damage threshold as the melting threshold. The cooling rate calculated on the basis of present results is 2.4×1015°C/s. Recrystallization was the common feature of the damage morphology. For fluences greater than the single pulse damage-threshold micropits and spherical grains of micron size were formed in the damaged surface. Ablation (surface removal) was also observed at higher fluences (at two or three times of damage threshold value). The damage morphology, induced by multiple pulses, was unaffected for linear and circular polarization.  相似文献   

19.
M. Anija 《Optics Communications》2009,282(18):3770-3774
We report spectroscopic investigations of an ultrafast laser induced plasma generated in a planar water microjet. Plasma recombination emissions along with the spectral blueshift and broadening of the pump laser pulse contribute to the total emission. The laser pulses are of 100 fs duration, and the incident intensity is around 1015 W/cm2. The dominant mechanisms leading to plasma formation are optical tunnel ionization and collisional ionization. Spectrally resolved polarization measurements show that the high frequency region of the emission is unpolarized whereas the low frequency region is polarized. Results indicate that at lower input intensities the emission arises mainly from plasma recombinations, which is accompanied by a weak blueshift of the incident laser pulse. At higher input intensities strong recombination emissions are seen, along with a broadening and asymmetric spectral blueshift of the pump laser pulse. From the nature of the blueshifted laser pulse it is possible to deduce whether the rate of change of free electron density is a constant or variable within the pulse lifetime. Two input laser intensity regimes, in which collisional and tunnel ionizations are dominant respectively, have been thus identified.  相似文献   

20.
王宬朕  董全力  刘苹  吴奕莹  盛政明  张杰 《物理学报》2017,66(11):115203-115203
直接驱动惯性约束聚变(ICF)的实现需要对靶丸进行严格的对称压缩,以达到自持热核反应(点火)所需的条件.快点火方案的应用降低了对靶丸压缩对称性以及驱动能量的要求,但压缩及核反应过程中良好的靶丸对称性无疑有助于核反应增益的提高.本文研究了快点火方案中高能电子注入高密等离子体后导致的各向异性电子的压强张量.这一现象存在于ICF快点火方案中的高能电子束"点火"及核反应阶段.鉴于高能电子加热离子过程以及靶丸核反应自持燃烧过程的时间较长,高密靶核会由于超高的各向异性压强的作用破坏高密靶丸的对称性,降低核燃料密度,进而降低了核燃料燃烧效率以及核反应增益.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号