首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
To any finite-dimensional simple Lie algebra \({\mathfrak{g}}\) and automorphism \({\sigma: \mathfrak{g}\to \mathfrak{g}}\) we associate a cyclotomic Gaudin algebra. This is a large commutative subalgebra of \({U(\mathfrak{g})^{\otimes N}}\) generated by a hierarchy of cyclotomic Gaudin Hamiltonians. It reduces to the Gaudin algebra in the special case \({\sigma ={\rm id}}\).  相似文献   

2.
Let μ be an arbitrary composition of M + N and let \({\mathfrak{s}}\) be an arbitrary \({0^{M}1^{N}}\)- sequence. A new presentation, depending on \({\mu \rm and \mathfrak{s}}\), of the super Yangian YM|N associated to the general linear Lie superalgebra \({\mathfrak{gl}_{M|N}}\) is obtained.  相似文献   

3.
Let \({U_q(\widehat{\mathfrak g})}\) be the quantum affine algebra associated to a simply-laced simple Lie algebra \({\mathfrak{g}}\) . We examine the relationship between Dorey’s rule, which is a geometrical statement about Coxeter orbits of \({\mathfrak{g}}\) -weights, and the structure of q-characters of fundamental representations V i,a of \({U_q(\widehat{\mathfrak g})}\) . In particular, we prove, without recourse to the ADE classification, that the rule provides a necessary and sufficient condition for the monomial 1 to appear in the q-character of a three-fold tensor product \({V_{i,a}\otimes V_{j,b}\otimes V_{k,c}}\) .  相似文献   

4.
For a finite-dimensional simple Lie algebra \({\mathfrak{g}}\), we use the vertex tensor category theory of Huang and Lepowsky to identify the category of standard modules for the affine Lie algebra \({{\widehat{\mathfrak{g}}}}\) at a fixed level \({\ell\in\mathbb{N}}\) with a certain tensor category of finite-dimensional \({\mathfrak{g}}\)-modules. More precisely, the category of level ? standard \({{\widehat{\mathfrak{g}}}}\)-modules is the module category for the simple vertex operator algebra \({L_{\widehat{\mathfrak{g}}}(\ell, 0)}\), and as is well known, this category is equivalent as an abelian category to \({\mathbf{D}(\mathfrak{g},\ell)}\), the category of finite-dimensional modules for the Zhu’s algebra \({A{(L_{\widehat{\mathfrak{g}}}(\ell, 0))}}\), which is a quotient of \({U(\mathfrak{g})}\). Our main result is a direct construction using Knizhnik–Zamolodchikov equations of the associativity isomorphisms in \({\mathbf{D}(\mathfrak{g},\ell)}\) induced from the associativity isomorphisms constructed by Huang and Lepowsky in \({{L_{\widehat{\mathfrak{g}}}(\ell, 0) - \mathbf{mod}}}\). This construction shows that \({\mathbf{D}(\mathfrak{g},\ell)}\) is closely related to the Drinfeld category of \({U(\mathfrak{g})}\)[[h]]-modules used by Kazhdan and Lusztig to identify categories of \({{\widehat{\mathfrak{g}}}}\)-modules at irrational and most negative rational levels with categories of quantum group modules.  相似文献   

5.
Let \({\mathfrak{D}}\) be the space consists of pairs (f, g), where f is a univalent function on the unit disc with f(0) = 0, g is a univalent function on the exterior of the unit disc with g(∞) = ∞ and f′(0)g′(∞) = 1. In this article, we define the time variables \({t_n, n\in \mathbb{Z}}\), on \({\mathfrak{D}}\) which are holomorphic with respect to the natural complex structure on \({\mathfrak{D}}\) and can serve as local complex coordinates for \({\mathfrak{D}}\) . We show that the evolutions of the pair (f, g) with respect to these time coordinates are governed by the dispersionless Toda hierarchy flows. An explicit tau function is constructed for the dispersionless Toda hierarchy. By restricting \({\mathfrak{D}}\) to the subspace Σ consists of pairs where \({f(w)=1/\overline{g(1/\bar{w})}}\), we obtain the integrable hierarchy of conformal mappings considered by Wiegmann and Zabrodin [31]. Since every C 1 homeomorphism γ of the unit circle corresponds uniquely to an element (f, g) of \({\mathfrak{D}}\) under the conformal welding \({\gamma=g^{-1}\circ f}\), the space Homeo C (S 1) can be naturally identified as a subspace of \({\mathfrak{D}}\) characterized by f(S 1) = g(S 1). We show that we can naturally define complexified vector fields \({\partial_n, n\in \mathbb{Z}}\) on Homeo C (S 1) so that the evolutions of (f, g) on Homeo C (S 1) with respect to ? n satisfy the dispersionless Toda hierarchy. Finally, we show that there is a similar integrable structure for the Riemann mappings (f ?1g ?1). Moreover, in the latter case, the time variables are Fourier coefficients of γ and 1/γ ?1.  相似文献   

6.
Gaudin algebras form a family of maximal commutative subalgebras in the tensor product of n copies of the universal enveloping algebra \({U(\mathfrak {g})}\) of a semisimple Lie algebra \({\mathfrak {g}}\). This family is parameterized by collections of pairwise distinct complex numbers z 1, . . . , z n . We obtain some new commutative subalgebras in \({U(\mathfrak {g})^{\otimes n}}\) as limit cases of Gaudin subalgebras. These commutative subalgebras turn to be related to the Hamiltonians of bending flows and to the Gelfand–Tsetlin bases. We use this to prove the simplicity of spectrum in the Gaudin model for some new cases.  相似文献   

7.
8.
There is a general method for constructing a soliton hierarchy from a splitting \({{L_{\pm}}}\) of a loop group as positive and negative sub-groups together with a commuting linearly independent sequence in the positive Lie algebra \({\mathcal{L}_{+}}\). Many known soliton hierarchies can be constructed this way. The formal inverse scattering associates to each f in the negative subgroup \({L_-}\) a solution \({u_{f}}\) of the hierarchy. When there is a 2 co-cycle of the Lie algebra that vanishes on both sub-algebras, Wilson constructed a tau function \({\tau_{f}}\) for each element \({f \in L_-}\). In this paper, we give integral formulas for variations of \({\ln\tau_{f}}\) and second partials of \({\ln\tau_{f}}\), discuss whether we can recover solutions \({u_{f}}\) from \({\tau_{f}}\), and give a general construction of actions of the positive half of the Virasoro algebra on tau functions. We write down formulas relating tau functions and formal inverse scattering solutions and the Virasoro vector fields for the \({GL(n,\mathbb{C})}\)-hierarchy.  相似文献   

9.
Let K be a field of characteristic zero. For \({n \in \mathbb{N}^{*}}\) , let \({\mathcal{T}^{\,\prime}_{n}}\) be the vector space of non-planar rooted trees with n vertices (Foissy in Bull Sci Math 126, no. 3, 193–239; no. 4, 249–288, 2002). Let \({\vartriangleright}\) be the left pre-Lie product of insertion of a tree inside another defined on infinitesimal characters of the graded Hopf algebra \({\mathcal{H}}\) introduced by Calaque, Ebrahimi-Fard and Manchon. Let \({\mathcal{T}^{\,\prime}=\oplus_{n\geq 2}\mathcal{T}^{\,\prime}_{n}}\) . In this work, we first prove that \({(\mathcal{T}^{\,\prime}, \vartriangleright)}\) a pre-Lie algebra generated by the two ladders E 1 and E 2 where E 1 is the ladder with one edge and E 2 is the ladder with two edges. Second, we prove that \({(\mathcal{T}^{\,\prime}, \vartriangleright)}\) is not a free pre-Lie algebra, and we exhibit a family of relations.  相似文献   

10.
For a Hopf algebra B, we endow the Heisenberg double \({\mathcal{H}(B^*)}\) with the structure of a module algebra over the Drinfeld double \({\mathcal{D}(B)}\). Based on this property, we propose that \({\mathcal{H}(B^*)}\) is to be the counterpart of the algebra of fields on the quantum-group side of the Kazhdan–Lusztig duality between logarithmic conformal field theories and quantum groups. As an example, we work out the case where B is the Taft Hopf algebra related to the \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\) quantum group that is Kazhdan–Lusztig-dual to (p,1) logarithmic conformal models. The corresponding pair \({(\mathcal{D}(B),\mathcal{H}(B^*))}\) is “truncated” to \({(\overline{\mathcal{U}}_{\mathfrak{q}} s\ell2,\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2))}\), where \({\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2)}\) is a \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\) module algebra that turns out to have the form \({\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2)=\mathbb{C}_{\mathfrak{q}}[z,\partial]\otimes\mathbb{C}[\lambda]/(\lambda^{2p}-1)}\), where \({\mathbb{C}_{\mathfrak{q}}[z,\partial]}\) is the \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\)-module algebra with the relations z p  = 0, ? p  = 0, and \({\partial z = \mathfrak{q}-\mathfrak{q}^{-1} + \mathfrak{q}^{-2} z\partial}\).  相似文献   

11.
The 2D Discrete Gaussian model gives each height function \({\eta : {\mathbb{Z}^2\to\mathbb{Z}}}\) a probability proportional to \({\exp(-\beta \mathcal{H}(\eta))}\), where \({\beta}\) is the inverse-temperature and \({\mathcal{H}(\eta) = \sum_{x\sim y}(\eta_x-\eta_y)^2}\) sums over nearest-neighbor bonds. We consider the model at large fixed \({\beta}\), where it is flat unlike its continuous analog (the Discrete Gaussian Free Field). We first establish that the maximum height in an \({L\times L}\) box with 0 boundary conditions concentrates on two integers M, M + 1 with \({M\sim \sqrt{(1/2\pi\beta)\log L\log\log L}}\). The key is a large deviation estimate for the height at the origin in \({\mathbb{Z}^{2}}\), dominated by “harmonic pinnacles”, integer approximations of a harmonic variational problem. Second, in this model conditioned on \({\eta\geq 0}\) (a floor), the average height rises, and in fact the height of almost all sites concentrates on levels H, H + 1 where \({H\sim M/\sqrt{2}}\). This in particular pins down the asymptotics, and corrects the order, in results of Bricmont et al. (J. Stat. Phys. 42(5–6):743–798, 1986), where it was argued that the maximum and the height of the surface above a floor are both of order \({\sqrt{\log L}}\). Finally, our methods extend to other classical surface models (e.g., restricted SOS), featuring connections to p-harmonic analysis and alternating sign matrices.  相似文献   

12.
It is well known that quantum correlations for bipartite dichotomic measurements are those of the form \({\gamma=(\langle u_i,v_j\rangle)_{i,j=1}^n}\), where the vectors ui and vj are in the unit ball of a real Hilbert space. In this work we study the probability of the nonlocal nature of these correlations as a function of \({\alpha=\frac{m}{n}}\), where the previous vectors are sampled according to the Haar measure in the unit sphere of \({\mathbb R^m}\). In particular, we prove the existence of an \({\alpha_0 > 0}\) such that if \({\alpha\leq \alpha_0}\), \({\gamma}\) is nonlocal with probability tending to 1 as \({n\rightarrow \infty}\), while for \({\alpha > 2}\), \({\gamma}\) is local with probability tending to 1 as \({n\rightarrow \infty}\).  相似文献   

13.
Let \({T=\mathbb R^d}\) . Let a function \({QT^2\to\mathbb C}\) satisfy \({Q(s,t)=\overline{Q(t,s)}}\) and \({|Q(s,t)|=1}\). A generalized statistics is described by creation operators \({\partial_t^\dagger}\) and annihilation operators ? t , \({t\in T}\), which satisfy the Q-commutation relations: \({\partial_s\partial^\dagger_t = Q(s, t)\partial^\dagger_t\partial_s+\delta(s, t)}\) , \({\partial_s\partial_t = Q(t, s)\partial_t\partial_s}\), \({\partial^\dagger_s\partial^\dagger_t = Q(t, s)\partial^\dagger_t\partial^\dagger_s}\). From the point of view of physics, the most important case of a generalized statistics is the anyon statistics, for which Q(s, t) is equal to q if s < t, and to \({\bar q}\) if s > t. Here \({q\in\mathbb C}\) , |q| = 1. We start the paper with a detailed discussion of a Q-Fock space and operators \({(\partial_t^\dagger,\partial_t)_{t\in T}}\) in it, which satisfy the Q-commutation relations. Next, we consider a noncommutative stochastic process (white noise) \({\omega(t)=\partial_t^\dagger+\partial_t+\lambda\partial_t^\dagger\partial_t}\) , \({t\in T}\) . Here \({\lambda\in\mathbb R}\) is a fixed parameter. The case λ = 0 corresponds to a Q-analog of Brownian motion, while λ ≠ 0 corresponds to a (centered) Q-Poisson process. We study Q-Hermite (Q-Charlier respectively) polynomials of infinitely many noncommutatative variables \({(\omega(t))_{t\in T}}\) . The main aim of the paper is to explain the notion of independence for a generalized statistics, and to derive corresponding Lévy processes. To this end, we recursively define Q-cumulants of a field \({(\xi(t))_{t\in T}}\). This allows us to define a Q-Lévy process as a field \({(\xi(t))_{t\in T}}\) whose values at different points of T are Q-independent and which possesses a stationarity of increments (in a certain sense). We present an explicit construction of a Q-Lévy process, and derive a Nualart–Schoutens-type chaotic decomposition for such a process.  相似文献   

14.
Motivated by perturbation theory, we prove that the nonlinear part \({H^{*}}\) of the KdV Hamiltonian \({H^{kdv}}\), when expressed in action variables \({I = (I_{n})_{n \geqslant 1}}\), extends to a real analytic function on the positive quadrant \({\ell^{2}_{+}(\mathbb{N})}\) of \({\ell^{2}(\mathbb{N})}\) and is strictly concave near \({0}\). As a consequence, the differential of \({H^{*}}\) defines a local diffeomorphism near 0 of \({\ell_{\mathbb{C}}^{2}(\mathbb{N})}\). Furthermore, we prove that the Fourier-Lebesgue spaces \({\mathcal{F}\mathcal{L}^{s,p}}\) with \({-1/2 \leqslant s \leqslant 0}\) and \({2 \leqslant p < \infty}\), admit global KdV-Birkhoff coordinates. In particular, it means that \({\ell^{2}_+(\mathbb{N})}\) is the space of action variables of the underlying phase space \({\mathcal{F}\mathcal{L}^{-1/2,4}}\) and that the KdV equation is globally in time \({C^{0}}\)-well-posed on \({\mathcal{F}\mathcal{L}^{-1/2,4}}\).  相似文献   

15.
Previously, we derive a representation of q-deformed \({\mathfrak{gl}_{\ell+1}}\) -Whittaker function as a sum over Gelfand–Zetlin patterns. This representation provides an analog of the Shintani–Casselman–Shalika formula for q-deformed \({\mathfrak{gl}_{\ell+1}}\) -Whittaker functions. In this note, we provide a derivation of the Givental integral representation of the classical \({\mathfrak{gl}_{\ell+1}}\) -Whittaker function as a limit q → 1 of the sum over the Gelfand–Zetlin patterns representation of the q-deformed \({\mathfrak{gl}_{\ell+1}}\) -Whittaker function. Thus, Givental representation provides an analog the Shintani–Casselman–Shalika formula for classical Whittaker functions.  相似文献   

16.
A quantum system (with Hilbert space \({\mathcal {H}_{1}}\)) entangled with its environment (with Hilbert space \({\mathcal {H}_{2}}\)) is usually not attributed to a wave function but only to a reduced density matrix \({\rho_{1}}\). Nevertheless, there is a precise way of attributing to it a random wave function \({\psi_{1}}\), called its conditional wave function, whose probability distribution \({\mu_{1}}\) depends on the entangled wave function \({\psi \in \mathcal {H}_{1} \otimes \mathcal {H}_{2}}\) in the Hilbert space of system and environment together. It also depends on a choice of orthonormal basis of \({\mathcal {H}_{2}}\) but in relevant cases, as we show, not very much. We prove several universality (or typicality) results about \({\mu_{1}}\), e.g., that if the environment is sufficiently large then for every orthonormal basis of \({\mathcal {H}_{2}}\), most entangled states \({\psi}\) with given reduced density matrix \({\rho_{1}}\) are such that \({\mu_{1}}\) is close to one of the so-called GAP (Gaussian adjusted projected) measures, \({GAP(\rho_{1})}\). We also show that, for most entangled states \({\psi}\) from a microcanonical subspace (spanned by the eigenvectors of the Hamiltonian with energies in a narrow interval \({[E, E+ \delta E]}\)) and most orthonormal bases of \({\mathcal {H}_{2}}\), \({\mu_{1}}\) is close to \({GAP(\rm {tr}_{2} \rho_{mc})}\) with \({\rho_{mc}}\) the normalized projection to the microcanonical subspace. In particular, if the coupling between the system and the environment is weak, then \({\mu_{1}}\) is close to \({GAP(\rho_\beta)}\) with \({\rho_\beta}\) the canonical density matrix on \({\mathcal {H}_{1}}\) at inverse temperature \({\beta=\beta(E)}\). This provides the mathematical justification of our claim in Goldstein et al. (J Stat Phys 125: 1193–1221, 2006) that GAP measures describe the thermal equilibrium distribution of the wave function.  相似文献   

17.
We study the determinant \({\det(I-\gamma K_s), 0 < \gamma < 1}\) , of the integrable Fredholm operator K s acting on the interval (?1, 1) with kernel \({K_s(\lambda, \mu)= \frac{\sin s(\lambda - \mu)}{\pi (\lambda-\mu)}}\) . This determinant arises in the analysis of a log-gas of interacting particles in the bulk-scaling limit, at inverse temperature \({\beta=2}\) , in the presence of an external potential \({v=-\frac{1}{2}\ln(1-\gamma)}\) supported on an interval of length \({\frac{2s}{\pi}}\) . We evaluate, in particular, the double scaling limit of \({\det(I-\gamma K_s)}\) as \({s\rightarrow\infty}\) and \({\gamma\uparrow 1}\) , in the region \({0\leq\kappa=\frac{v}{s}=-\frac{1}{2s}\ln(1-\gamma)\leq 1-\delta}\) , for any fixed \({0 < \delta < 1}\) . This problem was first considered by Dyson (Chen Ning Yang: A Great Physicist of the Twentieth Century. International Press, Cambridge, pp. 131–146, 1995).  相似文献   

18.
Let V be a braided vector space, i.e., a vector space together with a solution \({\hat{R}\in {{End}}(V\otimes V)}\) of the Yang–Baxter equation. Denote \({T(V):=\bigoplus_k V^{\otimes k}}\) . We associate to \({\hat{R}}\) a one-parameter family of solutions \({T(\hat{R})\in {\rm End}(T(V)\otimes T(V))}\) of the Yang–Baxter equation on the tensor space T (V). Main ingredients of the solution are braid analogues of the binomial coefficients and of the Pochhammer symbols. The association \({\hat{R}\rightsquigarrow T(\hat{R})}\) is functorial with respect to V.  相似文献   

19.
We put independent model dynamical constraints on the net electric charge Q of some astronomical and astrophysical objects by assuming that their exterior spacetimes are described by the Reissner-Nordström, metric, which induces an additional potential \({U_{\rm RN} \propto Q^2 r^{-2}}\). From the current bounds \({\Delta \dot \varpi}\) on any anomalies in the secular perihelion rate \({\dot \varpi}\) of Mercury and the Earth–mercury ranging Δρ, we have \({\left|Q_{\odot}\right| \lesssim 1-0.4 \times 10^{18}\ {\rm C}}\). Such constraints are ~60–200 times tighter than those recently inferred in literature. For the Earth, the perigee precession of the Moon, determined with the Lunar Laser Ranging technique, and the intersatellite ranging Δρ for the GRACE mission yield \({\left|Q_{\oplus} \right| \lesssim 5-0.4 \times 10^{14}\ {\rm C}}\). The periastron rate of the double pulsar PSR J0737-3039A/B system allows to infer \({\left|Q_{\rm NS} \right| \lesssim 5\times 10^{19}\ {\rm C}}\). According to the perinigricon precession of the main sequence S2 star in Sgr A*, the electric charge carried by the compact object hosted in the Galactic Center may be as large as \({\left|Q_{\bullet} \right| \lesssim 4\times 10^{27} \ {\rm C}}\). Our results extend to other hypothetical power-law interactions inducing extra-potentials \({U_{\rm pert} = \Psi r^{-2}}\) as well. It turns out that the terrestrial GRACE mission yields the tightest constraint on the parameter \({\Psi}\), assumed as a universal constant, amounting to \({|\Psi| \lesssim 5\times 10^{9}\ {\rm m^4\ s^{-2}}}\).  相似文献   

20.
We study the off-diagonal decay of Bergman kernels \({\Pi_{h^k}(z,w)}\) and Berezin kernels \({P_{h^k}(z,w)}\) for ample invariant line bundles over compact toric projective kähler manifolds of dimension m. When the metric is real analytic, \({P_{h^k}(z,w) \simeq k^m {\rm exp} - k D(z,w)}\) where \({D(z,w)}\) is the diastasis. When the metric is only \({C^{\infty}}\) this asymptotic cannot hold for all \({(z,w)}\) since the diastasis is not even defined for all \({(z,w)}\) close to the diagonal. Our main result is that for general toric \({C^{\infty}}\) metrics, \({P_{h^k}(z,w) \simeq k^m {\rm exp} - k D(z,w)}\) as long as w lies on the \({\mathbb{R}_+^m}\)-orbit of z, and for general \({(z,w)}\), \({{\rm lim\,sup}_{k \to \infty} \frac{1}{k} {\rm log} P_{h^k}(z,w) \,\leq\, - D(z^*,w^*)}\) where \({D(z, w^*)}\) is the diastasis between z and the translate of w by \({(S^1)^m}\) to the \({\mathbb{R}_+^m}\) orbit of z. These results are complementary to Mike Christ’s negative results showing that \({P_{h^k}(z,w)}\) does not have off-diagonal exponential decay at “speed” k if \({(z,w)}\) lies on the same \({(S^1)^m}\)-orbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号