首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We give, as L grows to infinity, an explicit lower bound of order \({L^{\frac{n}{m}}}\) for the expected Betti numbers of the vanishing locus of a random linear combination of eigenvectors of P with eigenvalues below L. Here, P denotes an elliptic self-adjoint pseudo-differential operator of order \({m > 0}\), bounded from below and acting on the sections of a Riemannian line bundle over a smooth closed n-dimensional manifold M equipped with some Lebesgue measure. In fact, for every closed hypersurface \({\Sigma}\) of \({\mathbb{R}^n}\), we prove that there exists a positive constant \({p_\Sigma}\) depending only on \({\Sigma}\), such that for every large enough L and every \({x \in M}\), a component diffeomorphic to \({\Sigma}\) appears with probability at least \({p_\Sigma}\) in the vanishing locus of a random section and in the ball of radius \({L^{-\frac{1}{m}}}\) centered at x. These results apply in particular to Laplace–Beltrami and Dirichlet-to-Neumann operators.  相似文献   

2.
We study the off-diagonal decay of Bergman kernels \({\Pi_{h^k}(z,w)}\) and Berezin kernels \({P_{h^k}(z,w)}\) for ample invariant line bundles over compact toric projective kähler manifolds of dimension m. When the metric is real analytic, \({P_{h^k}(z,w) \simeq k^m {\rm exp} - k D(z,w)}\) where \({D(z,w)}\) is the diastasis. When the metric is only \({C^{\infty}}\) this asymptotic cannot hold for all \({(z,w)}\) since the diastasis is not even defined for all \({(z,w)}\) close to the diagonal. Our main result is that for general toric \({C^{\infty}}\) metrics, \({P_{h^k}(z,w) \simeq k^m {\rm exp} - k D(z,w)}\) as long as w lies on the \({\mathbb{R}_+^m}\)-orbit of z, and for general \({(z,w)}\), \({{\rm lim\,sup}_{k \to \infty} \frac{1}{k} {\rm log} P_{h^k}(z,w) \,\leq\, - D(z^*,w^*)}\) where \({D(z, w^*)}\) is the diastasis between z and the translate of w by \({(S^1)^m}\) to the \({\mathbb{R}_+^m}\) orbit of z. These results are complementary to Mike Christ’s negative results showing that \({P_{h^k}(z,w)}\) does not have off-diagonal exponential decay at “speed” k if \({(z,w)}\) lies on the same \({(S^1)^m}\)-orbit.  相似文献   

3.
We consider Hermitian and symmetric random band matrices H in d ≥ 1 dimensions. The matrix elements H xy , indexed by \({x,y \in \Lambda \subset \mathbb{Z}^d}\), are independent, uniformly distributed random variables if \({\lvert{x-y}\rvert}\) is less than the band width W, and zero otherwise. We prove that the time evolution of a quantum particle subject to the Hamiltonian H is diffusive on time scales \({t\ll W^{d/3}}\). We also show that the localization length of the eigenvectors of H is larger than a factor W d/6 times the band width. All results are uniform in the size \({\lvert{\Lambda}\rvert}\) of the matrix.  相似文献   

4.
Let \({T=\mathbb R^d}\) . Let a function \({QT^2\to\mathbb C}\) satisfy \({Q(s,t)=\overline{Q(t,s)}}\) and \({|Q(s,t)|=1}\). A generalized statistics is described by creation operators \({\partial_t^\dagger}\) and annihilation operators ? t , \({t\in T}\), which satisfy the Q-commutation relations: \({\partial_s\partial^\dagger_t = Q(s, t)\partial^\dagger_t\partial_s+\delta(s, t)}\) , \({\partial_s\partial_t = Q(t, s)\partial_t\partial_s}\), \({\partial^\dagger_s\partial^\dagger_t = Q(t, s)\partial^\dagger_t\partial^\dagger_s}\). From the point of view of physics, the most important case of a generalized statistics is the anyon statistics, for which Q(s, t) is equal to q if s < t, and to \({\bar q}\) if s > t. Here \({q\in\mathbb C}\) , |q| = 1. We start the paper with a detailed discussion of a Q-Fock space and operators \({(\partial_t^\dagger,\partial_t)_{t\in T}}\) in it, which satisfy the Q-commutation relations. Next, we consider a noncommutative stochastic process (white noise) \({\omega(t)=\partial_t^\dagger+\partial_t+\lambda\partial_t^\dagger\partial_t}\) , \({t\in T}\) . Here \({\lambda\in\mathbb R}\) is a fixed parameter. The case λ = 0 corresponds to a Q-analog of Brownian motion, while λ ≠ 0 corresponds to a (centered) Q-Poisson process. We study Q-Hermite (Q-Charlier respectively) polynomials of infinitely many noncommutatative variables \({(\omega(t))_{t\in T}}\) . The main aim of the paper is to explain the notion of independence for a generalized statistics, and to derive corresponding Lévy processes. To this end, we recursively define Q-cumulants of a field \({(\xi(t))_{t\in T}}\). This allows us to define a Q-Lévy process as a field \({(\xi(t))_{t\in T}}\) whose values at different points of T are Q-independent and which possesses a stationarity of increments (in a certain sense). We present an explicit construction of a Q-Lévy process, and derive a Nualart–Schoutens-type chaotic decomposition for such a process.  相似文献   

5.
It is well known that quantum correlations for bipartite dichotomic measurements are those of the form \({\gamma=(\langle u_i,v_j\rangle)_{i,j=1}^n}\), where the vectors ui and vj are in the unit ball of a real Hilbert space. In this work we study the probability of the nonlocal nature of these correlations as a function of \({\alpha=\frac{m}{n}}\), where the previous vectors are sampled according to the Haar measure in the unit sphere of \({\mathbb R^m}\). In particular, we prove the existence of an \({\alpha_0 > 0}\) such that if \({\alpha\leq \alpha_0}\), \({\gamma}\) is nonlocal with probability tending to 1 as \({n\rightarrow \infty}\), while for \({\alpha > 2}\), \({\gamma}\) is local with probability tending to 1 as \({n\rightarrow \infty}\).  相似文献   

6.
We extend and apply a rigorous renormalisation group method to study critical correlation functions, on the 4-dimensional lattice \({{{\mathbb{Z}}}^{4}}\), for the weakly coupled n-component \({|\varphi|^{4}}\) spin model for all \({n \ge 1}\), and for the continuous-time weakly self-avoiding walk. For the \({|\varphi|^{4}}\) model, we prove that the critical two-point function has |x|?2 (Gaussian) decay asymptotically, for \({n \ge 1}\). We also determine the asymptotic decay of the critical correlations of the squares of components of \({\varphi}\), including the logarithmic corrections to Gaussian scaling, for \({n \ge 1}\). The above extends previously known results for n = 1 to all \({n \ge 1}\), and also observes new phenomena for n > 1, all with a new method of proof. For the continuous-time weakly self-avoiding walk, we determine the decay of the critical generating function for the “watermelon” network consisting of p weakly mutually- and self-avoiding walks, for all \({p \ge 1}\), including the logarithmic corrections. This extends a previously known result for p = 1, for which there is no logarithmic correction, to a much more general setting. In addition, for both models, we study the approach to the critical point and prove the existence of logarithmic corrections to scaling for certain correlation functions. Our method gives a rigorous analysis of the weakly self-avoiding walk as the n = 0 case of the \({|\varphi|^{4}}\) model, and provides a unified treatment of both models, and of all the above results.  相似文献   

7.
Let {M k } be a degenerating sequence of finite volume, hyperbolic manifolds of dimension d, with d = 2 or d = 3, with finite volume limit M . Let \({Z_{M_{k}} (s)}\) be the associated sequence of Selberg zeta functions, and let \({{\mathcal{Z}}_{k} (s)}\) be the product of local factors in the Euler product expansion of \({Z_{M_{k}} (s)}\) corresponding to the pinching geodesics on M k . The main result in this article is to prove that \({Z_{M_{k}} (s)/{\mathcal{Z}}_{k} (s)}\) converges to \({Z_{M_{\infty}} (s)}\) for all \({s \in \mathbf{C}}\)with Re(s) > (d ? 1)/2. The significant feature of our analysis is that the convergence of \({Z_{M_{k}} (s)/{\mathcal{Z}}_{k} (s)}\) to \({Z_{M_{\infty}} (s)}\) is obtained up to the critical line, including the right half of the critical strip, a region where the Euler product definition of the Selberg zeta function does not converge. In the case d = 2, our result reproves by different means the main theorem in Schulze (J Funct Anal 236:120–160, 2006).  相似文献   

8.
We introduce spherical T-duality, which relates pairs of the form (P, H) consisting of a principal SU(2)-bundle \({P \rightarrow M}\) and a 7-cocycle H on P. Intuitively spherical T-duality exchanges H with the second Chern class c 2(P). Unless \({dim(M) \leq 4}\), not all pairs admit spherical T-duals and the spherical T-duals are not always unique. Nonetheless, we prove that all spherical T-dualities induce a degree-shifting isomorphism on the 7-twisted cohomologies of the bundles and, when \({dim(M) \leq 7}\), also their integral twisted cohomologies and, when \({dim(M) \leq 4}\), even their 7-twisted K-theories. While spherical T-duality does not appear to relate equivalent string theories, it does provide an identification between conserved charges in certain distinct IIB supergravity and string compactifications.  相似文献   

9.
In this proceeding, we present our recent work on decay behaviors of the Pc hadronic molecules, which can help to disentangle the nature of the two Pc pentaquark-like structures. The results turn out that the relative ratio of the decays of P c + (4380) to \({\bar D *}{\Lambda _c}\) and Jp is very different for Pc being a \({\bar D *}{\Sigma _c}\) or \(\bar D\Sigma _c *\) bound state with \({J^P} = \frac{{{3 - }}}{2}\) And from the total decay width, we find that Pc(4380) being a \(\bar D\Sigma _c *\) molecule state with \({J^P} = \frac{{{3 - }}}{2}\) and Pc(4450) being a \({\bar D *}{\Sigma _c}\) molecule state with \({J^P} = \frac{{{5 + }}}{2}\) is more favorable to the experimental data.  相似文献   

10.
An \({\alpha}\)nn three-cluster model of the \({^6}\)He nucleus is studied by solving the Faddeev equations, where the cluster potential between \({\alpha}\) and n takes into account the Pauli exclusion correction, using the Fish-Bone Optical Model (Schmid in Z Phys A 297:105, 1980). The resulting binding energy of the ground state (\({0^+}\)) is 0.831 MeV and the resonance energy of the first excited state (\({2^+}\)), 0.60–i0.012 MeV, is extracted from the three-cluster break-up threshold. These theoretical values are in reasonable agreement with the experimental data: 0.973 MeV and 0.824–i0.056 MeV, respectively. In order to investigate the structure of these states, we calculate the angle density matrix for the \({\angle n_1 \alpha n_2}\) angle in the triangle formed by the three clusters. The angle density matrix of the ground state has two peaks and the configuration of \({0^+}\) wave function corresponding to the peaks constitutes a mixture of an acute-angled triangle structure and an obtuse-angled one. This finding is consistent with the former result from a variational approach (Hagino and Sagawa in Phys Rev C 72:044321, 2005). On the other hand, in the case of \({2^+}\) state only a single peak is obtained.  相似文献   

11.
We consider the discrete Gaussian Free Field in a square box in \({\mathbb{Z}^2}\) of side length N with zero boundary conditions and study the joint law of its properly-centered extreme values (h) and their scaled spatial positions (x) in the limit as \({N \to \infty}\). Restricting attention to extreme local maxima, i.e., the extreme points that are maximal in an rN-neighborhood thereof, we prove that the associated process tends, whenever \({r_N \to \infty}\) and \({r_N/N \to 0}\), to a Poisson point process with intensity measure \({Z{(\rm dx)}{\rm e}^{-\alpha h} {\rm d}h}\), where \({\alpha:= 2/\sqrt{g}}\) with g: = 2/π and where Z(dx) is a random Borel measure on [0, 1]2. In particular, this yields an integral representation of the law of the absolute maximum, similar to that found in the context of Branching Brownian Motion. We give evidence that the random measure Z is a version of the derivative martingale associated with the continuum Gaussian Free Field.  相似文献   

12.
In this paper, the mass spectra are obtained for doubly heavy \(\Xi \) baryons, namely, \(\Xi _{cc}^{+}\), \(\Xi _{cc}^{++}\), \(\Xi _{bb}^{-}\), \(\Xi _{bb}^{0}\), \(\Xi _{bc}^{0}\) and \(\Xi _{bc}^{+}\). These baryons consist of two heavy quarks (cc, bb, and bc) with a light (d or u) quark. The ground, radial, and orbital states are calculated in the framework of the hypercentral constituent quark model with Coulomb plus linear potential. Our results are also compared with other predictions, thus, the average possible range of excited states masses of these \(\Xi \) baryons can be determined. The study of the Regge trajectories is performed in (n, \(M^{2}\)) and (J, \(M^{2}\)) planes and their slopes and intercepts are also determined. Lastly, the ground state magnetic moments of these doubly heavy baryons are also calculated.  相似文献   

13.
We consider d-dimensional solutions to the electrovacuum Einstein–Maxwell equations with the Weyl tensor of type N and a null Maxwell \((p+1)\)-form field. We prove that such spacetimes are necessarily aligned, i.e. the Weyl tensor of the corresponding spacetime and the electromagnetic field share the same aligned null direction (AND). Moreover, this AND is geodetic, shear-free, non-expanding and non-twisting and hence Einstein–Maxwell equations imply that Weyl type N spacetimes with a null Maxwell \((p+1)\)-form field belong to the Kundt class. Moreover, these Kundt spacetimes are necessarily \({ CSI}\) and the \((p+1)\)-form is \({ VSI}\). Finally, a general coordinate form of solutions and a reduction of the field equations are discussed.  相似文献   

14.
Let M be a smooth Riemannian manifold. We show that for C 1 generic \({f\in {\rm Diff}^1(M)}\), if f has a hyperbolic attractor Λ f , then there exists a unique SRB measure supported on Λ f . Moreover, the SRB measure happens to be the unique equilibrium state of potential function \({\psi_f\in C^0(\Lambda_f)}\) defined by \({\psi_f(x)=-\log|\det(Df|E^u_x)|, x\in \Lambda_f}\), where \({E^u_x}\) is the unstable space of T x M.  相似文献   

15.
We consider time delay for the Dirac equation. A new method to calculate the asymptotics of the expectation values of the operator \({\int\limits_{0} ^{\infty}{\rm e}^{iH_{0}t}\zeta(\frac{\vert x\vert }{R}) {\rm e}^{-iH_{0}t}{\rm d}t}\), as \({R \rightarrow \infty}\), is presented. Here, H0 is the free Dirac operator and \({\zeta\left(t\right)}\) is such that \({\zeta\left(t\right) = 1}\) for \({0 \leq t \leq 1}\) and \({\zeta\left(t\right) = 0}\) for \({t > 1}\). This approach allows us to obtain the time delay operator \({\delta \mathcal{T}\left(f\right)}\) for initial states f in \({\mathcal{H} _{2}^{3/2+\varepsilon}(\mathbb{R}^{3};\mathbb{C}^{4})}\), \({\varepsilon > 0}\), the Sobolev space of order \({3/2+\varepsilon}\) and weight 2. The relation between the time delay operator \({\delta\mathcal{T}\left(f\right)}\) and the Eisenbud–Wigner time delay operator is given. In addition, the relation between the averaged time delay and the spectral shift function is presented.  相似文献   

16.
The singular values squared of the random matrix product \({Y = {G_{r} G_{r-1}} \ldots G_{1} (G_{0} + A)}\), where each \({G_{j}}\) is a rectangular standard complex Gaussian matrix while A is non-random, are shown to be a determinantal point process with the correlation kernel given by a double contour integral. When all but finitely many eigenvalues of A*A are equal to bN, the kernel is shown to admit a well-defined hard edge scaling, in which case a critical value is established and a phase transition phenomenon is observed. More specifically, the limiting kernel in the subcritical regime of \({0 < b < 1}\) is independent of b, and is in fact the same as that known for the case b =  0 due to Kuijlaars and Zhang. The critical regime of b =  1 allows for a double scaling limit by choosing \({{b = (1 - \tau/\sqrt{N})^{-1}}}\), and for this the critical kernel and outlier phenomenon are established. In the simplest case r =  0, which is closely related to non-intersecting squared Bessel paths, a distribution corresponding to the finite shifted mean LUE is proven to be the scaling limit in the supercritical regime of \({b > 1}\) with two distinct scaling rates. Similar results also hold true for the random matrix product \({T_{r} T_{r-1} \ldots T_{1} (G_{0} + A)}\), with each \({T_{j}}\) being a truncated unitary matrix.  相似文献   

17.
The 2D Discrete Gaussian model gives each height function \({\eta : {\mathbb{Z}^2\to\mathbb{Z}}}\) a probability proportional to \({\exp(-\beta \mathcal{H}(\eta))}\), where \({\beta}\) is the inverse-temperature and \({\mathcal{H}(\eta) = \sum_{x\sim y}(\eta_x-\eta_y)^2}\) sums over nearest-neighbor bonds. We consider the model at large fixed \({\beta}\), where it is flat unlike its continuous analog (the Discrete Gaussian Free Field). We first establish that the maximum height in an \({L\times L}\) box with 0 boundary conditions concentrates on two integers M, M + 1 with \({M\sim \sqrt{(1/2\pi\beta)\log L\log\log L}}\). The key is a large deviation estimate for the height at the origin in \({\mathbb{Z}^{2}}\), dominated by “harmonic pinnacles”, integer approximations of a harmonic variational problem. Second, in this model conditioned on \({\eta\geq 0}\) (a floor), the average height rises, and in fact the height of almost all sites concentrates on levels H, H + 1 where \({H\sim M/\sqrt{2}}\). This in particular pins down the asymptotics, and corrects the order, in results of Bricmont et al. (J. Stat. Phys. 42(5–6):743–798, 1986), where it was argued that the maximum and the height of the surface above a floor are both of order \({\sqrt{\log L}}\). Finally, our methods extend to other classical surface models (e.g., restricted SOS), featuring connections to p-harmonic analysis and alternating sign matrices.  相似文献   

18.
Spectral measures for fundamental representations of the rank two Lie groups SU(3), Sp(2) and G2 have been studied. Since these groups have rank two, these spectral measures can be defined as measures over their maximal torus \({\mathbb{T}^2}\) and are invariant under an action of the corresponding Weyl group, which is a subgroup of \({GL(2,\mathbb{Z})}\). Here we consider spectral measures invariant under an action of the other finite subgroups of \({GL(2,\mathbb{Z})}\). These spectral measures are all associated with fundamental representations of other rank two Lie groups, namely \({\mathbb{T}^2=U(1) \times U(1)}\), \({U(1) \times SU(2)}\), U(2), \({SU(2) \times SU(2)}\), SO(4) and PSU(3).  相似文献   

19.
On a fixed Riemann surface (M 0, g 0) with N Euclidean ends and genus g, we show that, under a topological condition, the scattering matrix S V (λ) at frequency λ > 0 for the operator Δ+V determines the potential V if \({V\in C^{1,\alpha}(M_0)\cap e^{-\gamma d(\cdot,z_0)^j}L^\infty(M_0)}\) for all γ > 0 and for some \({j\in\{1,2\}}\) , where d(z, z 0) denotes the distance from z to a fixed point \({z_0\in M_0}\) . The topological condition is given by \({N\geq \max(2g+1,2)}\) for j = 1 and by N ≥ g + 1 if j = 2. In \({\mathbb {R}^2}\) this implies that the operator S V (λ) determines any C 1, α potential V such that \({V(z)=O(e^{-\gamma|z|^2})}\) for all γ > 0.  相似文献   

20.
In this work, we study systematically the mass splittings of the \(qq\bar{Q}\bar{Q}\) (\(q=u\), d, s and \(Q=c\), b) tetraquark states with the color-magnetic interaction by considering color mixing effects and estimate roughly their masses. We find that the color mixing effect is relatively important for the \(J^P=0^+\) states and possible stable tetraquarks exist in the \(nn\bar{Q}\bar{Q}\) (\(n=u\), d) and \(ns\bar{Q}\bar{Q}\) systems either with \(J=0\) or with \(J=1\). Possible decay patterns of the tetraquarks are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号