首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we give a new proof of the second order Boltzmann–Gibbs principle introduced in Gonçalves and Jara (Arch Ration Mech Anal 212(2):597–644, 2014). The proof does not impose the knowledge on the spectral gap inequality for the underlying model and it relies on a proper decomposition of the antisymmetric part of the current of the system in terms of polynomial functions. In addition, we fully derive the convergence of the equilibrium fluctuations towards (1) a trivial process in case of super-diffusive systems, (2) an Ornstein–Uhlenbeck process or the unique energy solution of the stochastic Burgers equation, as defined in Gubinelli and Jara (SPDEs Anal Comput (1):325–350, 2013) and Gubinelli and Perkowski (Arxiv:1508.07764, 2015), in case of weakly asymmetric diffusive systems. Examples and applications are presented for weakly and partial asymmetric exclusion processes, weakly asymmetric speed change exclusion processes and hamiltonian systems with exponential interactions.  相似文献   

2.
Wilson (Proceedings of the twenty-eight annual acm symposium on the theory of computing, pp. 296–303, 1996) in the 1990s described a simple and efficient algorithm based on loop-erased random walks to sample uniform spanning trees and more generally weighted trees or forests spanning a given graph. This algorithm provides a powerful tool in analyzing structures on networks and along this line of thinking, in recent works (Avena and Gaudillière in A proof of the transfer-current theorem in absence of reversibility, in Stat. Probab. Lett. 142, 17–22 (2018); Avena and Gaudillière in J Theor Probab, 2017.  https://doi.org/10.1007/s10959-017-0771-3; Avena et al. in Approximate and exact solutions of intertwining equations though random spanning forests, 2017. arXiv:1702.05992v1; Avena et al. in Intertwining wavelets or multiresolution analysis on graphs through random forests, 2017. arXiv:1707.04616, to appear in ACHA (2018)) we focused on applications of spanning rooted forests on finite graphs. The resulting main conclusions are reviewed in this paper by collecting related theorems, algorithms, heuristics and numerical experiments. A first foundational part on determinantal structures and efficient sampling procedures is followed by four main applications: (1) a random-walk-based notion of well-distributed points in a graph, (2) a framework to describe metastable-like dynamics in finite settings by means of Markov intertwining dualities, (3) coarse graining schemes for networks and associated processes, (4) wavelets-like pyramidal algorithms for graph signals.  相似文献   

3.
We introduce quiver gauge theory associated with the non-simply laced type fractional quiver and define fractional quiver W-algebras by using construction of Kimura and Pestun (Lett Math Phys, 2018.  https://doi.org/10.1007/s11005-018-1072-1; Lett Math Phys, 2018.  https://doi.org/10.1007/s11005-018-1073-0) with representation of fractional quivers.  相似文献   

4.
In this paper, we present an explicit formula that connects the Kontsevich-Witten tau-function and the Hodge tau-function by differential operators belonging to the \({\widehat{GL(\infty)}}\) group. Indeed, we show that the two tau-functions can be connected using Virasoro operators. This proves a conjecture posted by Alexandrov in (From Hurwitz numbers to Kontsevich-Witten tau-function: a connection by Virasoro operators, Letters in Mathematical physics, doi:10.1007/s11005-013-0655-0, 2014).  相似文献   

5.
We define elliptic generalization of W-algebras associated with arbitrary quiver using our construction (Kimura and Pestun in Quiver W-algebras, 2015. arXiv:1512.08533 [hep-th]) with six-dimensional gauge theory.  相似文献   

6.
We construct examples of locally compact quantum groups coming from bicrossed product construction, including non-Kac ones, which can faithfully and ergodically act on connected classical (noncompact) smooth manifolds. However, none of these actions can be isometric in the sense of Goswami (Commun Math Phys 285(1):141–160, 2009), leading to the conjecture that the result obtained by Goswami and Joardar (Rigidity of action of compact quantum groups on compact, connected manifolds, 2013. arXiv:1309.1294) about nonexistence of genuine quantum isometry of classical compact connected Riemannian manifolds may hold in the noncompact case as well.  相似文献   

7.
We introduce a notion of noncommutative Poisson–Nijenhuis structure on the path algebra of a quiver. In particular, we focus on the case when the Poisson bracket arises from a noncommutative symplectic form. The formalism is then applied to the study of the Calogero–Moser and Gibbons–Hermsen integrable systems. In the former case, we give a new interpretation of the bihamiltonian reduction performed in Bartocci et al. (Int Math Res Not 2010:279–296, 2010. arXiv:0902.0953).  相似文献   

8.
In Giardinà et al. (ALEA Lat Am J Probab Math Stat 13(1):121–161, 2016), the authors have defined an annealed Ising model on random graphs and proved limit theorems for the magnetization of this model on some random graphs including random 2-regular graphs. Then in Can (Annealed limit theorems for the Ising model on random regular graphs, arXiv:1701.08639, 2017), we generalized their results to the class of all random regular graphs. In this paper, we study the critical behavior of this model. In particular, we determine the critical exponents and prove a non standard limit theorem stating that the magnetization scaled by \(n^{3/4}\) converges to a specific random variable, with n the number of vertices of random regular graphs.  相似文献   

9.
A scenario of leptogenesis was introduced in Alexander et al. (Phys Rev Lett 96:081301, 2006) which works during inflationary period within standard model of particle physics setup. In this scenario lepton number is created by the gravitational chiral anomaly which has a non-zero expectation value for models of inflation driven by pseudoscalar field(s). Here, we observe that models of inflation involving non-Abelian gauge fields, e.g. the chromo-natural inflation (Adshead and Wyman in Phys Rev Lett 108:261302, 2012) or the gauge-flation (Maleknejad and Sheikh-Jabbari in Phys Lett B 723:224, 2013. arXiv:1102.1513 [hep-ph]), have a parity-violating tensor mode (graviton) spectrum and naturally lead to a non-vanishing expectation value for the gravitational chiral anomaly. Therefore, one has a natural leptogenesis scenario associated with these inflationary setups, inflato-natural leptogenesis. We argue that the observed value of baryon-to-photon number density can be explained in a natural range of parameters in these models.  相似文献   

10.
We find all self-duality functions of the form
$$\begin{aligned} D(\xi , \eta )= \prod _{x} d(\xi _x, \eta _x) \end{aligned}$$
for a class of interacting particle systems. We call these duality functions of simple factorized form. The functions we recover are self-duality functions for interacting particle systems such as zero-range processes, symmetric inclusion and exclusion processes, as well as duality and self-duality functions for their continuous counterparts. The approach is based on, firstly, a general relation between factorized duality functions and stationary product measures and, secondly, an intertwining relation provided by generating functions. For the interacting particle systems, these self-duality and duality functions turn out to be generalizations of those previously obtained in Giardinà et al. (J Stat Phys 135:25–55, 2009) and, more recently, in Franceschini and Giardinà (Preprint, arXiv:1701.09115, 2016) . Thus, we discover that only these two families of dualities cover all possible cases. Moreover, the same method discloses all simple factorized self-duality functions for interacting diffusion systems such as the Brownian energy process, where both the process and its dual are in continuous variables.
  相似文献   

11.
By assuming a deterministic evolution of quantum systems and taking realism into account, we carefully build a hidden variable theory for Quantum Mechanics (QM) based on the notion of ontological states proposed by ’t Hooft (The cellular automaton interpretation of quantum mechanics, arXiv:1405.1548v3, 2015; Springer Open 185,  https://doi.org/10.1007/978-3-319-41285-6, 2016). We view these ontological states as the ones embedded with realism and compare them to the (usual) quantum states that represent superpositions, viewing the latter as mere information of the system they describe. Such a deterministic model puts forward conditions for the applicability of Bell’s inequality: the usual inequality cannot be applied to the usual experiments. We build a Bell-like inequality that can be applied to the EPR scenario and show that this inequality is always satisfied by QM. In this way we show that QM can indeed have a local interpretation, and thus meet with the causal structure imposed by the Theory of Special Relativity in a satisfying way.  相似文献   

12.
We use a functional renormalization group equation tailored to the Arnowitt–Deser–Misner formulation of gravity to study the scale dependence of Newton’s coupling and the cosmological constant on a background spacetime with topology \(S^1 \times S^d\). The resulting beta functions possess a non-trivial renormalization group fixed point, which may provide the high-energy completion of the theory through the asymptotic safety mechanism. The fixed point is robust with respect to changing the parametrization of the metric fluctuations and regulator scheme. The phase diagrams show that this fixed point is connected to a classical regime through a crossover. In addition the flow may exhibit a regime of “gravitational instability”, modifying the theory in the deep infrared. Our work complements earlier studies of the gravitational renormalization group flow on a background topology \(S^1 \times T^d\) (Biemans et al. Phys Rev D 95:086013, 2017, Biemans et al. arXiv:1702.06539, 2017) and establishes that the flow is essentially independent of the background topology.  相似文献   

13.
We prove the global well-posedness of the time-dependent Hartree–Fock–Bogoliubov (TDHFB) equations in \(\mathbb {R}^{1+1}\) with two-body interaction potential of the form \(N^{-1}v_N(x) = N^{\beta -1} v(N^\beta x)\) where \(v\ge 0\) is a sufficiently regular radial function, i.e., \(v \in L^1(\mathbb {R})\cap C^\infty (\mathbb {R})\). In particular, using methods of dispersive PDEs similar to the ones used in Grillakis and Machedon (Commun Partial Differ Equ 42:24–67, 2017), we are able to show for any scaling parameter \(\beta >0\) the TDHFB equations are globally well-posed in some Strichartz-type spaces independent of N, cf. (Bach et al. in The time-dependent Hartree–Fock–Bogoliubov equations for Bosons, 2016. arXiv:1602.05171).  相似文献   

14.
We study the parameterized post-Newtonian approximation in teleparallel model of gravity with a scalar field. The scalar field is non-minimally coupled to the scalar torsion as well as to the boundary term introduced in Bahamonde and Wright (Phys Rev D 92:084034 arXiv:1508.06580v4 [gr-qc], 2015). We show that, in contrast to the case where the scalar field is only coupled to the scalar torsion, the presence of the new coupling affects the parameterized post-Newtonian parameters. These parameters for different situations are obtained and discussed.  相似文献   

15.
We introduce the \(\mathrm {SL} (2,\mathbb {C})\) group action on a partition function of a cohomological field theory via a certain Givental’s action. Restricted to the small phase space we describe the action via the explicit formulae on a CohFT genus g potential. We prove that applied to the total ancestor potential of a simple-elliptic singularity the action introduced coincides with the transformation of Milanov–Ruan changing the primitive form (cf. Milanov and Ruan in Gromov–Witten theory of elliptic orbifold \(\mathbb {P}^{1}\) and quasi-modular forms, arXiv:1106.2321, 2011).  相似文献   

16.
For large fully connected neuron networks, we study the dynamics of homogenous assemblies of interacting neurons described by time elapsed models. Under general assumptions on the firing rate which include the ones made in previous works (Pakdaman et al. in Nonlinearity 23(1):55–75, 2010; SIAM J Appl Math 73(3):1260–1279, 2013, Mischler and Weng in Acta Appl Math, 2015), we establish accurate estimate on the long time behavior of the solutions in the weak and the strong connectivity regime both in the case with and without delay. Our results improve (Pakdaman et al. 2010, 2013) where a less accurate estimate was established and Mischler and Weng (2015) where only smooth firing rates were considered. Our approach combines several arguments introduced in the above previous works as well as a slightly refined version of the Weyl’s and spectral mapping theorems presented in Voigt (Monatsh Math 90(2):153–161, 1980) and Mischler and Scher (Ann Inst H Poincaré Anal Non Linéaire 33(3):849–898, 2016).  相似文献   

17.
The definition of ‘classical state’ from (Aerts in K. Engesser, D. Gabbay and D. Lehmann (Eds.), Handbook of Quantum Logic and Quantum Structures. Elsevier, Amsterdam, 2009), used e.g. in Aerts et al. (http://arxiv.org/abs/quant-ph/0503083, 2010) to prove a decomposition theorem internally in the language of State Property Systems, presupposes as an additional datum an orthocomplementation on the property lattice of a physical system. In this paper we argue on the basis of the (ε,d)-model on the Poincaré sphere that a notion of topologicity for states can be seen as an alternative (operationally foundable) classicality notion in the absence of an orthocomplementation, and compare it to the known and operationally founded concept of classicality.  相似文献   

18.
Recently I published an article in this journal entitled “Less interpretation and more decoherence in quantum gravity and inflationary cosmology” (Crull in Found Phys 45(9):1019–1045, 2015). This article generated responses from three pairs of authors: Vassallo and Esfeld (Found Phys 45(12):1533–1536, 2015), Okon and Sudarsky (Found Phys 46(7):852–879, 2016) and Fortin and Lombardi (Found Phys, 2017). In what follows, I reply to the criticisms raised by these authors.  相似文献   

19.
20.
In a recent publication (Abdesselam et al. arXiv:1608.02344), the Belle collaboration updated their analysis of the inclusive weak radiative B-meson decay, including the full dataset of \((772 \pm 11)\times 10^6~B\bar{B}\) pairs. Their result for the branching ratio is now below the Standard Model prediction (Misiak et al. Phys Rev Lett 114:221801, 2015, Czakon et al. JHEP 1504:168, 2015), though it remains consistent with it. However, bounds on the charged Higgs boson mass in the Two-Higgs-Doublet Model get affected in a significant manner. In the so-called Model II, the 95% C.L. lower bound on \(M_{H^\pm }\) is now in the 570–800 GeV range, depending quite sensitively on the method applied for its determination. Our present note is devoted to presenting and discussing the updated bounds, as well as to clarifying several ambiguities that one might encounter in evaluating them. One of such ambiguities stems from the photon energy cutoff choice, which deserves re-consideration in view of the improved experimental accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号