首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 328 毫秒
1.
Incorporation of magnetic nanoparticles in polymers with organic functional groups working as semiconducting substrate is of immense interest in the field of dilute magnetic semiconductors (DMS) and spintronics. In this article we report on synthesis and evaluation of dilutely doped (0-10 wt%) cobalt nanoparticles in emaraldine salt (ES) of polyaniline in the presence of dodecyl benzene sulfonic acid (DBSA) and p-toluene sulfonic acid (p-TSA) using a sonochemical-assisted-reduction approach as a possible DMS candidate. The X-ray diffraction pattern and high resolution transmission electron microscopy (HRTEM) image show the ES to be polycrystalline, in which 10 nm sized Co nanoparticles get embedded in its FCC structural form. From Fourier transform infrared (FT-IR) and UV-visible (UV-vis) spectroscopy studies, it is predicted that cobalt particles get electrostatically bound to the specific ion sites of ES, thereby modifying torsional degrees of freedom of the system. The applied field dependent magnetization study shows that the sample exhibits hysteresis loop with a minimal doping of 3 wt% of Co nanoparticles and increases with the amount of Co nanoparticles in ES due to dipolar interaction. The electron transport data show that with increase in Co wt% there is a gradual shift from ohmic to non-ohmic response to the sample bias, accompanied by opening of electrical hysteresis and an increased resistance. The non-linear response of higher doped systems has been attributed to the combination of direct and Fowler-Nordheim tunneling phenomena in these systems. Persistence of optical and transport properties of the polymer, with an introduction of magnetic moment in the system, envisages the system to be a fine magnetic semiconductor.  相似文献   

2.
Gold nanoparticles are immobilized in the hydrophilic coronas of spherical micelle carriers for high catalytic activity. The micelle is formed by self-assembly of block copolymer, polystyrene-b-poly (acrylic acid), in basic aqueous solution (pH 10) and has a polystyrene core and a poly (acrylic acid) corona. The gold nanoparticles are anchored into the poly (acrylic acid) corona by in situ reduction of the mixture of HAuCl4 and micelle with NaBH4. The sizes of the gold nanoparticles can be adjusted by changing the content of the HAuCl4. In the process of catalyzing p-nitrophenol to p-aminophenol, the reaction shows one-order kinetics, furthermore, the reaction rate increases with the concentration of composites as well as reaction temperature. Comparing the composites with polystyrene as core and poly (4-vinylpyridine)/Au as corona, the catalytic activity of the present composites is higher, which is ascribed to their hydrophilic corona structure.  相似文献   

3.
Synthesis of undoped and Mn doped ZnO nanoparticles by an inclusive co precipitation method and in situ capping with heteromultifunctional organic stabilizer mercaptosuccinic acid (MSA) in a core shell structure, in highly alkaline aqueous matrix have been accomplished. Near room temperature synthesis resulted in high quality monophasic wurtzite hexagonal structure of rod shaped nanoparticles of bare ZnO:Mn with no signature of dopant as separate phase. MSA capping resulted in nanoball like formation. Thermo gravimetric analysis (TGA) and FTIR confirmed MSA capping. ZnO: Mn particles emit in orange and red when excited by UV and blue light. Surface modification makes the nanoparticles hydrophilic with active organic surface easy for bioconjugation with any ligand and can have applications in drug delivery or as nanoscale fluorescent probe in a biological system.  相似文献   

4.
Size-controlled synthesis of pure rutile-phase TiO2 nanorods was carried out by a hydrothermal method using different organic acids as modifiers, and metatitanic acid and concentrated sulfuric acid as raw materials. The synthesized rutile TiO2 nanorods were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of organic acid modifiers on the sizes of rutile TiO2 nanorods were investigated. It was found that the steric effect occurred by the organic modifiers and non-polarity of organic acids were beneficial to the formation of small-sized rutile TiO2 nanorods. The strongly coordinative interaction between the carboxyl (or hydroxyl) group of the modifier and the surface of TiO2 nanoparticles effectively inhibited the crystal growth.  相似文献   

5.
Core–shell structured nanocomposites, a type of talented functional materials with unique microstructure and properties, have shown great promise as photocatalysts for various applications, including photocatalytic degradation of pollutants, water splitting for hydrogen production, and selective organic transformations. The synthesis and utilization of efficient core–shell nanoarchitectured photocatalysts for selective organic synthesis are at the center of our research efforts and the focus of this minireview. Specifically, semiconductor‐based core–shell nanocomposites, including metal–semiconductor, semiconductor–semiconductor, semiconductor–shell (graphene and SiO2) as photocatalysts/cocatalysts for selective oxidation of alcohols, reduction of nitro organics and carbon dioxide for synthesis of fine chemicals, and redox‐combined selective synthesis of pipecolinic acid are summarized. It is hoped that this minireview can make a contribution to catalyzing the development of smart core–shell nanostructures in the field of photocatalytic selective organic transformations for solar energy conversion.  相似文献   

6.
Synthesis of CdS and ZnS nanoparticles in reverse micelles and organic solvents has been carried out. Particles with a hexagonal structure 2–5 nm in size are formed during synthesis. Maintaining the reaction mixture at room temperature leads to the formation of nanoparticles with a cubic structure 100–150 nm in size. The changes in the optical properties of CdS and ZnS nanoparticles, depending on the synthesis method and conditions and on the precursors used, have been investigated. The luminescence characteristics of local surface defects of nanoparticles depend weakly on nanoparticle sizes. The dependence of the fluorescence and phosphorescence intensity of nanoparticle surface defects on the polarity of surrounding solution is demonstrated; thus, these particles can be used as polarity indicators.  相似文献   

7.
Composites of metal nanoparticles and environmentally sensitive polymers are useful as nanoactuators that can be triggered externally using light of a particular wavelength. We demonstrate a synthesis route that is easier than grafting techniques and allows for the in situ formation of individual gold nanoparticles encapsulated by an environmentally sensitive polymer, while also providing a strong interaction between the polymer and the metal particle. We present a one-pot, room-temperature synthesis route for gold metal nanoparticles that uses poly-N-isopropyl acrylamide as the capping and stabilizing agent and ascorbic acid as the reducing agent and achieves size control similar to the most common citric acid synthesis. We show that the composite can be precipitated reversibly by temperature or light using the non-radiative decay and conversion to heat of the surface plasmon resonance of the metal nanoparticle. The precipitation is induced by the collapse of the polymer cocoon surrounding each gold nanoparticle, as can be seen by surface plasmon spectroscopy. The experiments agree with theoretical models for the heat generation in a colloidal suspension that support fast switching with low laser power densities. The synthesized composite is a simple nanosized opto-thermal switch.  相似文献   

8.
Powders of magnetic nanoparticles coated by biocompatible block copolymers (substituted pyrroles) are investigated by small-angle neutron scattering. It is found that the structure of the final precipitates depends on the type of stabilizing shell in the initial magnetic fluids. When dodecylbenzene sulfonic acid is used, separate polydisperse particles with a radius of gyration of 3–5 nm and an irregular surface (fractal dimension of 2.24) are observed in the final samples. For systems with lauric acid, additional scattering from a quasicrystalline structure with a characteristic correlation length of about 10 nm can be seen in the experimental spectra. The difference in the organization of the structure of the studied powders is related to a different polymer coating rate on the surface of the magnetic nanoparticles, which depends on the sorption properties of surfactants in the initial magnetic fluids.  相似文献   

9.
This study reports the synthesis of palladium and rhodium metal nanoparticles supported on montmorillonite (MMT) and partially organically modified MMT (POMM) using tetraamine palladium and hexaamine rhodium complex as precursor for palladium and rhodium respectively. The synthesized nanoparticles were characterized by powder X-ray diffraction PXRD and TEM. The PXRD study shows characteristic crystallographic planes for Pd and Rh metal and confirm the formation of metal nanoparticles in MMT and POMM. The TEM images reveal the effect of organic modification of MMT on decreasing particle size of Pd and Rh metal. The Pd and Rh metal nanoparticles are agglomerated in pristine MMT while nanoparticles are well dispersed in POMM. ICP-AES analysis was carried out to estimate quantitative amount of Pd and Rh metal in MMT and POMM.  相似文献   

10.
The green synthesis of metallic nanoparticles paved the way to improve and protect the environment by decreasing the use of toxic chemicals and eliminating biological risks in biomedical applications. Plant mediated synthesis of metal nanoparticles is gaining more importance owing to its simplicity, rapid rate of synthesis of nanoparticles and eco-friendliness. The present article reports an environmentally benign and unexploited method for the synthesis of silver nanocatalysts using Trigonella foenum-graecum seeds, which is a potential source of phytochemicals. The UV–visible absorption spectra of the silver samples exhibited distinct band centered around 400–440 nm. The major phytochemicals present in the seed extract responsible for the formation of silver nanocatalysts are identified using FTIR spectroscopy. The report emphasizes the effect of the size of silver nanoparticles on the degradation rate of hazardous dyes, methyl orange, methylene blue and eosin Y by NaBH4. The efficiency of silver nanoparticles as a promising candidate for the catalysis of organic dyes by NaBH4 through the electron transfer process is established in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号