首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
生物炭中溶解性有机质的光谱分析   总被引:2,自引:0,他引:2  
稻壳和木屑是农林业废物处理与利用的重点,将稻壳和木屑制备成生物炭并用于环境污染与防治成为研究热点,但对稻壳和木屑生物炭中溶解性有机质(DOM)的研究还较少。以稻壳和木屑为生物质原料,在不同温度(200~700 ℃)下制备稻壳和木屑生物炭,利用紫外-可见光谱、三维荧光光谱和红外光谱技术对生物炭DOM的光谱特征进行分析,研究不同热解温度对生物炭DOM光谱特征的影响。结果表明,随着热解温度升高,稻壳和木屑生物炭DOM中溶解性有机碳(DOC)浓度逐渐降低,且木屑生物炭的DOC浓度远高于相同温度下的稻壳生物炭。稻壳和木屑生物炭DOM的紫外吸收均随着波长的增大而逐渐降低,且随着热解温度升高,稻壳生物炭DOM的吸光度先增加后降低,而木屑生物炭DOM则持续降低。紫外光谱的特征参数值(SUVA254和SUVA260)随着热解温度升高变化趋势相同,且在相同温度下,稻壳生物炭DOM的特征参数值均高于木屑。三维荧光光谱表明稻壳和木屑生物炭DOM的荧光峰主要出现在λex/em=300~315/400~425 nm和λex/em=210~245/380~435 nm波段,分别代表类腐殖质荧光峰和富里酸荧光峰,可用来表示生物炭DOM的腐殖化程度和疏水组分含量。随温度升高,稻壳生物炭DOM的腐殖化程度和疏水组分含量先升高后降低,而木屑生物炭DOM则逐渐降低。三维荧光参数表明稻壳和木屑生物炭DOM的自生源指标(autochthonous index,BIX)不强,生物可利用性和类蛋白比例较低;随着温度升高稻壳生物炭DOM腐殖化指数(humification index,HIX)先增加后降低,而木屑生物炭DOM的HIX则逐渐降低。此外,红外光谱结果表明,随着热解温度的升高,稻壳和木屑生物炭DOM中-OH逐渐降低,-CH2、-CH3变化不明显,芳环C═C, C-H增强,芳香化程度增强。  相似文献   

2.
This paper investigates the evolution of char properties with particle residence time during rapid pyrolysis of biochar under conditions pertinent to pulverized fuel (PF) applications. Two biochar samples were considered, prepared via slow (S-BC) and fast (F-BC) pyrolysis of mallee wood (150–250 µm) at 500 °C and two different heating rates (10 °C/s and ∼400 °C/s), respectively. The biochar samples were then subjected to rapid pyrolysis at 1300 °C using a novel drop-tube furnace (DTF), which enables direct determination of char yield experimentally. The evolution of char yield, the release of alkali and alkaline earth metallic (AAEM) species, and particle size and shape during rapid pyrolysis are investigated as a function of particle residence time (0.45 s to 1.4 s). The results show that char yields decrease from ∼77% to 75% when particle residence time increases from 0.45 s to 1.4 s. Rapid pyrolysis of F-BC has slightly higher char yields, due to the higher ash content of F-BC. More Cl in F-BC facilitates the release of Na during rapid pyrolysis, leading to the lower retention of Na in FC than in SC. Nevertheless, the retentions of K (∼90%), Mg (∼85%), and Ca (∼90%) are higher in FC, which can be ascribed to its higher contents of oxygen after rapid pyrolysis. The investigation of particle size and shape shows that biochar particles exhibit little changes after rapid pyrolysis, indicating their strong resistance to shrinkage and deformation even at high temperature.  相似文献   

3.
The study reports the effects of Ca and Na acetates on the transformation of nitrogen species during sewage sludge pyrolysis. Sludge samples, with or without acetates, were pyrolysed in a fix-bed reactor at 150–550 °C, and the nitrogen species in the pyrolysis products (char, tar, and gas) were characterised and quantified. Ca and Na acetates distinctly affect nitrogen transformation during sludge pyrolysis, which is ascribable to their different catalytic activities for the decomposition of nitrogen species in sludge. The addition of Ca acetate is found to increase nitrogen retention in char and reduce the formation of nitrogen species in tar, which is mainly due to the suppressed decomposition of protein-N as well as the promoted formation of stable nitrogen species in char. On the other hand, the addition of Na acetate enhances the decomposition of nitrogen species in sludge, such as protein- and inorganic-N. The levels of both Ca and Na acetates are significantly reduced in the nitrogen-containing gas emissions because acetone is produced when acetates are heated, and acetone readily reacts with NH3 to produce binary clusters or amines. Our results show that acetate addition is an important strategy for the reduction of NH3 emission during sludge pyrolysis.  相似文献   

4.
The tars derived from the pyrolysis of four typical municipal solid waste fractions at 600 °C, namely pine wood (PW), tryptone (TP), polyethylene (PE) and polyvinyl chloride (PVC), were characterized and then catalytically cracked by activated biochar catalyst (ABC) at 700–900 °C. The ABC was produced from the pyrolysis of pine wood at 800 °C for 1 h, then activated by CO2 at 900 °C for 20?min. The results showed that O-containing species, N-containing species, chain hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) were the main products in the raw tar from the pyrolysis of PW, TP, PE and PVC, respectively. The tar cracking efficiency by ABC was ordered as PW>TP>PE>PVC, which indicated that the biomass tars were easier to be converted by ABC than plastic tars. The highest tar conversion of 98.7% was achieved for PW at 900 °C. Besides, N-containing tars were more stable than O-containing tars. The coke deposition on the ABC was more serious after the cracking of plastic tars (PE and PVC) than that of biomass tars (PW and TP). After the catalytic cracking of TP and PVC tars at 900 °C, the nitrogen and chlorine contents in ABC increased by 3 times and 10.5 times, respectively.  相似文献   

5.
Filtration followed by expression characteristics of mixtures of clay and activated sludge are first reported in this study. Experimental results indicate that the average specific resistance of the mixed sludge exhibits an ideal-solution like behavior, that is, a linear combination of pure clay and activated sludge with the weight percentage as a parameter. In expression stage, nevertheless, the influence is highly nonlinear. The presence of a little amount of activated sludge can significantly increase both the expression creep effect and the portion of secondary consolidation. The consolidation stage data are interpreted by the Terzaghi-Voigt combined model, from which the model parameters are evaluated accordingly. As the activated sludge is added, both the difficulty of creeping of constituting particles within the sludge cake and the fraction of moisture attributed to the secondary consolidation increases rapidly, revealing a highly nonlinear characteristics. The dewatering efficiency of mixed sludge is discussed.  相似文献   

6.
Continuous catalytic pyrolysis of oily sludge was carried out in a special U-shape reactor for producing saturates-enriched light oil. The sludge underwent thermal pyrolysis first and then catalytic pyrolysis. During the thermal pyrolysis, chain hydrocarbons were first cracked and further polymerized into aromatics. The effect of temperatures (400–800 °C) on the products was investigated and the maximum liquid yield (67.7%) was obtained at 500 °C. High temperature promoted polymerization, thus the distribution of aromatics in the liquid product was increased and was more concentrated in polyaromatics at 800 °C. In the catalytic upgrading stage, dolomite was used as catalyst and aromatics were adsorbed on it, either aggregated or decomposed. As a result, a light oil product with 57.0% saturates was obtained at the residence time of 8.9?s due to the conversion of aromatics and heavy hydrocarbons into light aliphatic hydrocarbons such as straight chain hydrocarbons. Compared with the oil phase in the raw sludge sample, the content of saturates was increased by 45.0% and that of the asphaltenes was reduced by 88.5%. Meanwhile, the inherent moisture in the oily sludge could participate in the steam reforming reaction, promoting the decomposition of aromatics and leading to an increase in the H2 generation. Moreover, the release of H2S was reduced from 0.132 to 0.005?mol per kg sludge and the sulfur content of the oil product was also decreased in the presence of dolomite. The deactivation of dolomite can be attributed to the carbonization of CaO and deposition of polyaromatic coke on the catalyst surface.  相似文献   

7.
Understanding the chemical reactions during biomass and alkaline additives during pyrolysis process is critical to better utilization of biomass resource. In this study, the influence of seven alkaline additives (KOH, K2CO3, KHCO3, CH3COOK, NaOH, Ca(OH)2, and Mg(OH)2) on biomass pyrolysis was investigated in fixed-bed system, as well as the reaction mechanism through combining the evolution properties of biochar, bio-oil, gas products, and alkaline additives. Results showed that alkaline additives promoted the formation of biochar and gas products, while inhibited the generation of bio-oil. The content of phenols (reaching 80% for NaOH, mainly non?methoxy phenols) and hydrocarbons (reaching 38% for Ca(OH)2, mainly aromatics) increased greatly at the cost of acetic acid and O-species. Carbon content of biochar decreased largely, while oxygen content increased greatly, and the main O-containing species were –OH, -O–CO and -COOH groups. The surface area of biochar also increased greatly (reaching 764 m2/g for KOH). During pyrolysis process, alkaline additives could react with high active O-containing species and carbon fragments to generate lots of vacancies, then some anions of alkaline additive quickly occupied these vacancies to form new O-containing groups in biochar. Alkaline additives also converted into more stable structure (K2CO3, Na2CO3, CaO, and MgO). The possible reaction pathway between biomass and alkaline additives was first proposed.  相似文献   

8.
酸洗处理对生物质炭表面吸附特性及光谱特性的影响   总被引:1,自引:0,他引:1  
生物质炭表面灰分的存在会严重影响生物质炭的表面结构特性及吸附能力。采用HCl-HF对400和600 ℃两种温度制备的玉米秸秆生物质炭进行酸洗处理,去除生物质炭表面的灰分。通过对比酸洗前后玉米秸秆生物质炭的元素含量、比表面积、孔径分布、红外光谱分析图和吸附平衡试验结果探究酸洗处理对生物质炭表面吸附特性和光谱特性的影响。结果表明:酸洗处理能有效去除生物质炭表面存在的无机盐、焦油等一系列副产物,显著改变生物质炭的表面结构特性,提高生物质炭的吸附性能。(1)酸洗后生物质炭的碳含量相对增加,疏水性及芳香官能团含量增加,极性降低;(2)酸洗处理显著增加了生物质炭的比表面积,处理后炭比表面积分别增加了3.46倍和6.75倍;酸洗还显著提高了生物质炭的孔容及介孔含量,从而大大增加了生物质炭的吸附能力;(3)两种生物质炭酸洗前后的红外光谱上关键官能团峰强差异显著,尤其在3 398~3 447,2 924~3 056,1 378~1 439 cm-1范围内,酸洗后生物质炭的振动峰强度显著减小,表明生物质炭在酸洗后其表面脂肪结构和羟基减少。(4)酸洗前后的吸附试验表明,酸洗处理能够去除炭表面的灰分,增加生物质炭的吸附位点,进而提高其对2,4-D的吸附量。  相似文献   

9.
Flocs surface functional groups evolutions due to an ultrasonic treatment were investigated in respect with the mechanisms involved during sonication. Activated sludge surface functional groups changes were studied after treatment of a sample at different ultrasonic specific energies. Sludge functionality was qualitatively assessed by recording the infrared (FT-IR) spectra of centrifugation pellets. Potentiometric titration coupled with proton surface complexation modeling was used to assess the nature and quantity of ionizable functional groups present at the floc surface and in the aqueous phase. These evolutions were linked to changes of both mixed liquor biochemical composition (TSS, VSS, COD, proteins, humic like substances, polysaccharides) and physical properties (floc size and settleability). Observations carried out showed that activated sludge flocs were essentially mechanically disintegrated by ultrasonic waves: the nature of chemical bonds observed by FT-IR did not shift after ultrasonic treatment. Moreover, the total number of ionizable functional groups measured by potentiometric titrations remained constant during sonication. However, due to the solubilization of organic components induced by cavitation process, the corresponding ionizable functional groups (carboxyl, hydroxyl, amine) were transferred from particulate to soluble fraction. Moreover, due to the variable amount of proteins, humic like substances and polysaccharides solubilised, the relative contributions of carboxyl, hydroxyl and amine groups varied at floc surface.  相似文献   

10.
污泥的热解提油-半焦燃烧工艺的实验研究   总被引:1,自引:0,他引:1  
本文提出了双流化床中污泥的热解提油-半焦燃烧工艺,组织实验论证并进行了探索研究。结果表明,双流化床中可以实现污泥热解提油工艺和半焦燃烧工艺的耦合,即获得了污泥热解产生的油和气,又实现了污泥的焚烧无害化处理。污泥在双流化床中发生热解反应时,干燥无灰基污泥的油产率为24.1%,是煤的2.4倍,干燥无灰基污泥的轻油产率为8.44%,是煤的9倍。该工艺中,污泥中热量的43.1%转化为油,10.4%转化为热值10.54MJ/m~3的气体燃料,46.5%的热量残留在污泥半焦中,在燃烧炉内燃烧放热。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号