首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relevance of higher order cumulants of net baryon number fluctuations for the analysis of freeze-out and critical conditions in heavy-ion collisions at LHC and RHIC is addressed. The sign structure of the higher order cumulants in the vicinity of the chiral crossover temperature might be a sensitive probe and may allow to elucidate their relation to the QCD phase transition. We calculate ratios of generalized quarknumber susceptibilities to high orders in three flavor QCD-like models and investigate their sign structure close to the chiral crossover line.  相似文献   

2.
We discuss the sign and energy dependence of second to tenth order susceptibilities of the baryon number,charge number, and strangeness for the analysis of critical conditions in heavy ion collisions in the LHC and RHIC by applying a modified Nambu-Jona-Lasinio model. This model is fitted to the quark condensate of the lattice QCD result at finite temperature and zero baryon chemical potential. The presence of a critical point made these susceptibilities deviate considerably from a Hadron-Resonance-Gas model that shows no criticality. The sign, magnitude, and energy dependence of these higher order fluctuations hint towards the existence and location of a critical point that could be discovered in future heavy ion collision experiments.  相似文献   

3.
With an effective chiral flavour SU(3) model we show the effect of hadronic resonances on the QCD phase diagram. We state that varying the resonance couplings to the scalar and vector fields affects the order and location of the phase transition, the possible existence of a critical end point (CEP), and the thermodynamic properties. We present (strange) quark number susceptibilities at zero baryochemical potential and at three different points at the phase transition. Comparing results to lattice QCD, we state that reasonable large vector couplings limit the phase transition to a smooth crossover ruling out a CEP.  相似文献   

4.
We discuss the relevance of higher order cumulants of net baryon number fluctuations for the analysis of freeze-out and critical conditions in heavy ion collisions at LHC and RHIC. Using properties of O(4) scaling functions, we discuss the generic structure of these higher cumulants at vanishing baryon chemical potential and apply chiral model calculations to explore their properties at non-zero baryon chemical potential. We show that the ratios of the sixth to second and eighth to second order cumulants of the net baryon number fluctuations change rapidly in the transition region of the QCD phase diagram. Already at vanishing baryon chemical potential they deviate considerably from the predictions of the hadron resonance gas model which reproduce the second and fourth order cumulants of the net proton number fluctuations at RHIC. We point out that the sixth order cumulants of baryon number and electric charge fluctuations remain negative at the chiral transition temperature. Thus, they offer the possibility to probe the proximity of the chemical freeze-out to the crossover line.  相似文献   

5.
6.
In this study, the susceptibilities of conserved charges, baryon number, charge number, and strangeness number at zero and low values of chemical potential are presented. Taylor series expansion was used to obtain results for the three-flavor Polyakov quark meson (PQM) model and the Polyakov loop extended chiral quark mean-field (PCQMF) model. Mean-field approximation was used to study quark matter with the inclusion of the isospin chemical potential, as well as the vector interactions. The effects of isospin chemical potential and vector-interactions on phase diagrams were analyzed. A comparative analysis of the two models was completed. Fluctuations of the conserved charges were enhanced in the transition temperature regime and hence provided information about the critical end point (CEP). Susceptibilities of conserved quantities were calculated by using the Taylor series method. Enhancement of fluctuations in the transition temperature neighborhood provided a clear signature of a quantum chromodynamics (QCD) critical-point.  相似文献   

7.
Accounting for the influence of system size in relativistic heavy ion collisions, the finite-size form of a critical related observable is suggested. The fixed-point and straight line methods are proposed in exploring the QCD critical point and phase boundary in relativistic heavy ion collisions. As an application, the finitesize behaviour of the ratios of higher net-proton cumulants, dynamical electric charge fluctuations, and transverse momentum correlations in Au + Au collisions at RHIC are examined.  相似文献   

8.
To probe the mixed phase of QCD matter we study thermal dilepton emission and evaporation of hadrons with largeP T in the framework of hydrodynamical model for ultrarelativistic nuclear collisions.  相似文献   

9.
Using the most advanced formulation of the hadron resonance gas model we analyze the two sets of irregularities found at chemical freeze-out of central nuclear-nuclear collisions at the center of mass energies 3.8–4.9 GeV and 7.6–9.2 GeV. In addition to previously reported irregularities at the collision energies 4.9 and 9.2 GeV we found sharp peaks of baryonic charge density. Also we analyze the collision energy dependence of the modified Wroblewski factor and the strangeness suppression factor. Based on the thermostatic properties of the mixed phase of a 1st order phase transition and the ones of the Hagedorn mass spectrum we explain, respectively, the reason of observed chemical equilibration of strangeness at the collision energy 4.9 GeV and above 8.7 GeV. It is argued that the both sets of irregularities possibly evidence for two phase transitions, namely, the 1st order transition at lower energy range and the 2nd order transition at higher one. In combination with a recent analysis of the light nuclei number fluctuations we conclude that the center of mass collision energy range 8.8–9.2 GeV may be in the nearest vicinity of the QCD tricritical endpoint. The properties of the phase existing between two phase transitions are revealed and discussed.  相似文献   

10.
Mix-cumulants of conserved charge distributions are sensitive observables for probing properties of the QCD medium and phase transition in heavy-ion collisions. To perform precise measurements, efficiency correction is one of the most important step. In this study, using the binomial efficiency model, we derive efficiency correction formulas for mutually exclusive and inclusive variables. The UrQMD model is applied to verify the validity of these formulas for different types of correlations. Furthermore, we investigate the effect of the multiplicity loss and contamination emerging from the particle identifications. This study provides important steps toward future measurements of mixed-cumulants in relativistic heavy-ion collisions.  相似文献   

11.
Exploration of the QCD phase diagram and critical point is one of the main goals in current relativistic heavy-ion collisions. The QCD critical point is expected to belong to a three-dimensional (3D) Ising universality class. Machine learning techniques are found to be powerful in distinguishing different phases of matter and provide a new way to study the phase diagram. We investigate phase transitions in the 3D cubic Ising model using supervised learning methods. It is found that a 3D convolutional neural network can be trained to effectively predict physical quantities in different spin configurations. With a uniform neural network architecture, it can encode phases of matter and identify both second- and first-order phase transitions. The important features that discriminate different phases in the classification processes are investigated. These findings can help study and understand QCD phase transitions in relativistic heavy-ion collisions.  相似文献   

12.
We discuss the higher order cumulants of net-baryon and electric charge fluctuations as a probe of the QCD crossover. The sensitivity of the higher order cumulants in the hadron resonance gas model to an inclusion of repulsive interactions is also considered.  相似文献   

13.
We argue that by measuring higher moments of the net proton number fluctuations in heavy ion collisions (HIC) one can probe the QCD chiral cross-over transition experimentally. We discuss the properties of fluctuations of the net baryon number in the vicinity of the chiral cross-over transition within the Polyakov loop extended quark-meson model at finite temperature and baryon density. The calculation includes non-perturbative dynamics implemented within the functional renormalization group approach. We find a clear signal for the chiral cross-over transition in the fluctuations of the net baryon number. We address our theoretical findings to experimental data of the STAR Collaboration on energy and centrality dependence of the net proton number fluctuations and their probability distributions in HIC.  相似文献   

14.
使用多相输运(AMPT)模型来研究相对论重离子碰撞中强子物质的比热(CV)与对撞能量的关系以及温度的高阶涨落,并将之与文献[PhysRevC.94.044901]实验数据的比热结果进行了比较。对经历相变的系统,比热(CV)作为表征系统状态方程的热力学量,其值预期在临界点发散。而温度的高阶涨落对相变敏感,比热(CV)和温度的高阶涨落都是适于探测QCD相变和临界点的敏感探针。通过逐个事例的平均横动量(<pT>)来提取有效温度Teff,再通过粒子的有效温度Teff的分布提取出了相应粒子的热容。通过有效温度(Teff)的分布的高阶矩来计算温度的高阶涨落。发现AMPT模型中比热和温度的高阶矩都随温度单调递减。同时还发现在低碰撞能量时,实验数据的比热结果有随能量增加而有一个急速下降,与AMPT模型的走势显著不同。AMPT模型中没有QCD临界点,提供了一个无临界点的参考背景。AMPT模型的计算结果可与实验结果比较作为实验上寻找QCD临界点的参考。  相似文献   

15.
We present the first measurement of fluctuations from event to event in the production of strange particles in collisions of heavy nuclei. The ratio of charged kaons to charged pions is determined for individual central Pb+Pb collisions. After accounting for the fluctuations due to detector resolution and finite number statistics we derive an upper limit on genuine nonstatistical fluctuations, which could be related to a first- or second-order QCD phase transition. Such fluctuations are shown to be very small.  相似文献   

16.
We discuss the scaling laws of both the charged fragments multiplicity n fluctuations and the charge of the largest fragment Z(max) fluctuations for Xe + Sn collisions in the range of bombarding energies between 25A MeV and 50A MeV. We show at E(lab) > or similar to 32 MeV/A the transition in the fluctuation regime of Z(max) which is compatible with the transition from the ordered to disordered phase of excited nuclear matter. The size (charge) of the largest fragment is closely related to the order parameter characterizing this process.  相似文献   

17.
In this paper, we present an overview on recent progress in studies of QCD at finite temperature and densities within the functional renormalization group (fRG) approach. The fRG is a nonperturbative continuum field approach, in which quantum, thermal and density fluctuations are integrated successively with the evolution of the renormalization group (RG) scale. The fRG results for the QCD phase structure and the location of the critical end point (CEP), the QCD equation of state (EoS), the magnetic EoS, baryon number fluctuations confronted with recent experimental measurements, various critical exponents, spectral functions in the critical region, the dynamical critical exponent, etc, are presented. Recent estimates of the location of the CEP from first-principle QCD calculations within fRG and Dyson–Schwinger equations, which pass through lattice benchmark tests at small baryon chemical potentials, converge in a rather small region at baryon chemical potentials of about 600 MeV. A region of inhomogeneous instability indicated by a negative wave function renormalization is found with μB ≳ 420 MeV. It is found that the non-monotonic dependence of the kurtosis of the net-proton number distributions on the beam collision energy observed in experiments could arise from the increasingly sharp crossover in the regime of low collision energy.  相似文献   

18.
The implications of the strangeness conservation in a hadronic resonance gas (HRG) on the expected phase transition to the quark gluon plasma (QGP) are investigated. It is assumed that under favourable conditions a first order hadron-quark matter phase transition may occur in the hot hadronic matter such as those produced in the ultra-relativistic heavy-ion collisions at CERN and BNL. It is however shown that the criteria of strict strangeness conservation in the HRG may not permit the occurrence of a strict first order equilibrium quark-hadron phase transition unlike a previous study. This emerges as a consequence of the application of a realistic equation of state (EOS) for the HRG and QGP phases, which account for the finite-size effect arising from the short range hard-core hadronic repulsion in the HRG phase and the perturbative QCD interactions in the QGP phase. For a first order hadron-quark matter phase transition to occur one will therefore require large fluctuations in the critical thermal parameters, which might arise due to superheating, supercooling or other nonequlibrium effects. We also discuss a scenario proposed earlier, leading to a possible strangeness separation process during hadronization. Received: 25 August 1997 / Revised version: 25 March 1998 / Published online: 26 August 1998  相似文献   

19.
Results from new measurements of dynamical K/?? and p/?? ratio fluctuations are presented. Dynamical fluctuations in global conserved quantities such as baryon number, strangeness, or charge may be observed near a QCD critical point. The STAR experiment has previously acquired data in AuAu collisions at the energies $\sqrt {s_{NN} }$ = 200, 130, 62.4, and 19.6 GeV and CuCu collisions at $\sqrt {s_{NN} }$ = 200, 62.4, and 22.4 GeV. The commencing of a QCD critical point search at RHIC has extended the reach of possible measurements of dynamical K/?? and p/?? ratio fluctuations from AuAu collisions to lower energies. New results are compared to previous measurements and to theoretical predictions from the UrQMD model.  相似文献   

20.
Fluctuation signals of the QCD phase transition in nuclear collisions can be dissipated due to diffusion. Diffusive modes in the standard formulation of relativistic hydrodynamics propagate with infinite speed, violating causality. We develop a causal diffusion equation study the dissipation of net-charge fluctuations. We find that causality restricts the extent to which diffusion can dissipate these fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号