首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The thermal conduction and Navier-Stokes equations are usedto obtain the stress field generated by a chopped electron beam incident ona disk sample.The piezoelectric equation is then used to obtain the out-put signal of the transducer coupled to the sample.The results lead to aconsideration of the signal generation mechanism and spatial resolution inscanning electron acoustic microscopy(SEAM).It is shown that atime-variant heat source generated both a thermal wave and an acousticwave simultaneously,and thermal-to-acoustic wave mode conversion oc-cured on the boundary surfaces depends on the amplitudes and the gra-dients at boundary surfaces of both heat source and thermal waves.It isargued that the spatial resolution of a imaging system operated in thenear field,such as SEAM and thermal wave microscope,is dependent onthe distance between the heat source and scatterer and,at best,the lateralresolution in SEAM is of the order of the diameter of the focal spot ofthe electron beam.  相似文献   

2.
In ghost imaging, an illumination light is split into test and reference beams which pass through two different optical systems respectively and an image is constructed with the second-order correlation between the two light beams. Since both light beams are diffracted when passing through the optical systems, the spatial resolution of ghost imaging is in general lower than that of a corresponding conventional imaging system. When Gaussian-shaped light spots are used to illuminate an object, randomly scanning across the object plane, in the ghost imaging scheme, we show th√at by localizing central positions of the spots of the reference light beam, the resolution can be increased by a factor of 2~(1/2) same as that of the corresponding conventional imaging system. We also find that the resolution can be further enhanced by setting an appropriate threshold to the bucket measurement of ghost imaging.  相似文献   

3.
The theory for a two-stream free electron laser (FEL) consisting of a relativistic electron beam transported along the axis of a planar wiggler in the presence of an axial guiding magnetic field is proposed and investigated. The electron trajectories and the small signal gain are derived. The characteristic of the linear gain and the normalized maximum gain are studied numerically. The result shows that the normalized maximum gain is considerably enhanced in comparison with that of the single stream. The effect of the difference between the energies of the two beams in this configuration of FEL is also considered, and we find that the gain is affected by the energy differences between groups 1 and 2.  相似文献   

4.
Based on the inverse Faraday effect, a super-long longitudinal magnetization needle can be induced by a transversely polarized needle-shaped electric field. This needle-shaped electric field can be obtained in the focal volume of the objective by focusing an azimuthally polarized vortex beam that is modulated both radially and azimuthally by a specifically designed annular phase filter. The numerical calculation shows that the full widths at half-maximums in longitudinal direction and in transverse direction of the magnetization needle are 28λ and0.27λ. The corresponding needle aspect ratio of 103 is more than ten times larger than that of the magnetization needle fabricated by electron beam lithography.  相似文献   

5.
A new GaAs(100) spin polarized electron source with an optical polarimeter, which is employed in the field of polarized electron and gas atom collision, is presented in detail. The apparatus is passive-magnetic-shielded by a box and a cylinder made of nickel-iron-molybdenum soft magnetic alloy without Helmholtz coil arrangement. And a uniformly distributed residual magnetic field of less than 5 × 10^-7T is obtained near the collision area. The spin polarized electron beam is transmitted and focused onto collision point from photocathode by a set of electron optics with more than 25% transmission 95 cm distance through an 1 mm diameter aperture. Construction and operation of the apparatus, such as vacuum and magnetic shielding system, photocathode, laser optics, electron optics and polarimeter are discussed. The polarization of the spin polarized electron beam is determined to be 30.8 ±3.5% measured with a He optical polarimeter.  相似文献   

6.
In this letter, numerical simulation and experimental study of a radial-slab solid-state laser are presented. The laser includes four crossing-slabs pumped by four Xe flashlamps. The numerical simulation of coherent intensity in the near field and the far field indicates that the laser with the structure can improve the quality of output beam compared with incoherent beam combination. The radial-slab solid-state laser is fabricated, and initial experiments are carried out at a pulse repetition of 1 Hz. Nine beams in the near field and one combined beam in the far field are obtained in our initial experiment. The experimental results are consistent with the numerical analysis in the coherent condition. The results show that coherent beam combination is obtained by this laser.  相似文献   

7.
Using transmitting volume Bragg gratings (TVBG) as a basis,an experiment on one-dimensional spatial filtering of a deformed laser beam is designed.The deformed laser beam results from a He-Ne laser beam modulated by an amplitude modulation plate with a spatial frequency of 7.2 mm·1.Results show that when the central wave vector of the deformed beam satisfies the Bragg law of TVBG,the spatial profile of the -1st forward-diffracted order is similar to that of the undeformed He-Ne laser beam due to the TVBG with a spatial frequency selective bandwidth of less than 5.0 mm·1.The higher frequency components of the deformed beam are filtered out in the optical near field.Thus,the TVBG cleanup of the spatiallydeformed laser beam is realized experimentally.  相似文献   

8.
We present our experimental studies on the effects of the pumping sizes on THz radiation based on ultrashort light pulse optical rectification for high spatial resolution T-Ray imaging. Our experiments show that high spatial resolution T-ray imaging requires both thin THz emitter and sample, and rigorous tolerance of the gap between the sample and the emitter, as well as small pumping size which usually much smaller compared with THz wavelength. Such a small pumping size results in dramatic decrease of the THz wave power, which originates from strong diffraction of THz wave, the depolarization of the focused tightly pumping beam, the spatial filtering of the emitter exit-surface, and the strong phase-mismatching between the pumping and the high spatial Fourier components of the THz signal, rather than two-photon absorption.  相似文献   

9.
High density boron carbide nanowires are grown by an improved carbon thermal reduction technique. Transmission electron microscopy and electron energy lose spectroscopy of the sample show that the synthesized nanowires are B4 C with good crystallization. The field emission measurement for an individual boron nanowire is performed by using a Pt tip installed in the focused ion beam system. A field emission current with enhancement factor of 10^6 is observed and the evolution process during emission is also carefully studied. Furthermore, a two-step field emission with stable emission current density is found from the high-density nanowire film. Our results together suggest that boron carbide nanowires are promising candidates for electron emission nanodevices.  相似文献   

10.
Considering the magnetic field response of the QGP medium,we perform a systematical study of the chiral magnetic effect(CME),and make a comparison with the experimental results for the background-subtracted correlator H at the energies of the RHIC Beam Energy Scan(BES)and the LHC energy.The CME signals from our computations show a centrality trend and beam energy dependence that are qualitatively consistent with the experimental measurements of the charge dependent correlations.The time evolution of the chiral electromagnetic current at the RHIC and LHC energies is systematically studied.The dependence of the time-integrated current signal on the beam energy√s with different centralities is investigated.Our phenomenological analysis shows that the time-integrated electromagnetic current is maximal near the collision energy√s≈39 GeV.The qualitative trend of the induced electromagnetic current is in agreement with the CME experimental results at the RHIC and LHC energies.  相似文献   

11.
Nanoscale resolution in material sciences is usually restricted to scanning electron beam microscopes. Here we present a procedure that allows single molecule resolution of the sample surface with visible light. Highlighting the performance we used electron beam lithography to generate highly regular nanostructures consisting of interconnected cubes. The samples were labeled with Alexa 647 dyes. The spatial organization of the dyes on nanostructured surfaces was localized with single molecule resolution using localization microscopy. This succeeded also in an absolute spatial calibration of the localization method applied (spectral precision distance microscopy/SPDM). The findings will contribute to the field of product control for industrial applications and long-term fluorescence imaging.  相似文献   

12.
为获取超快光脉冲信号,提出了一种基于光电子脉冲准线性展宽的高时间分辨二维成像技术。利用高频时变电场的线性工作区加速光电子脉冲信号,通过优化阴极激励源的电参数,选择光电子进入加速区的时刻实现光电子脉冲的准线性展宽。利用曝光时间100ps的门控选通微通道板在脉冲展宽模块的记录面进行选通曝光成像,实现高时间分辨的二维成像。为改善系统的空间分辨和成像畸变,添加轴向聚焦磁场解决电子漂移区中由电子空间电荷效应引起的时间和空间弥散,对于能量4 keV、出射角0.1°的电子束,聚焦磁场的最佳强度为0.057 T,此时阴极中心位置的空间分辨可达5 1p/mm,阴极边缘位置空间分辨稍差。基于光电子脉冲准线性展宽技术,可将漂移距离50 cm,初始脉宽10 ps的电子脉冲展宽10倍,从而可将门控MCP探测器的时间分辨提高1个量级(即10 ps以内)。  相似文献   

13.
A two-dimensional image of spatial structures within a superconducting tunnel junction can be obtained by scanning the current-biased junction with an electron beam and detecting the voltage change. The resolution of this imaging technique is governed by the thermal-healing length which describes the spatial diffusion of the beam energy through the superconducting film. Due to the thermal skin efect this resolution can be improved remarkably by high-freqency modulation of the beam intensity and synchronous signal detection.  相似文献   

14.
 采用图像诊断方法对高能环形电子束形状及空间尺寸进行了研究,以高能脉冲环形电子束轰击高Z靶材料产生脉冲X射线,X射线经过X射线增感屏转换为可见光,用单次图像采集系统获取可见光的积分图像。为满足诊断所需的空间分辨和系统灵敏度,通过理论计算确立了靶的材料、厚度及X射线增感屏的型号和厚度等参数。根据测试环境,设计了系统的现场安装结构,系统基本满足测试要求。分析从实验中获取的图像,可知环形电子束的内径为36.5 mm,环厚为1 mm,环形不均匀,水平方向电子束强。  相似文献   

15.
介绍并表征了一套单法兰集成的低能电子显微镜. 这套显微镜中采用了10o偏转角的磁分束器,从而有利于将其集成到一个10 in的法兰上. 电子光学系统中的一些修正单元被简化,以使其结构简单,容易操作. 样品被置于地电位,方便各静电透镜浮在高电压上. 通过几个实验展示了这台显微镜在典型的低能电子成像、低能电子衍射和光电子成像模式下的性能. 低能电子成像的空间分辨率为51 nm. 利用飞秒激光做光源,相应的非线性光电子发射过程使得这台设备非常适合进行光学近场现象的观察,并获得110 nm的光电子成像空间分辨率.  相似文献   

16.
Over the past decade, focused electron beam-induced deposition has become a mature necessary part of the tool box engineers and scientists. This review presents the current state of the art in sub-10 nm focused electron beam deposition and describes the dominant mechanisms that have been found so far for this regime. Several questions regarding patterning at the highest resolution are addressed. What do our findings mean for using sub-10 nm focused electron beam deposition for industrial applications? And which fundamental issues remain to be solved? The overview shows that low-energy secondary electrons dominate the deposition process. As a result, the highest obtainable spatial resolution (averaged over many deposits) is limited by the mean free path of those electrons. Therefore, the only route to improve the resolution beyond the current appears to be using complexes that are sensitive to the high-energy electrons in the incident beam, rather than to the secondaries. Focused electron beam-induced deposition is compared to related techniques. It is on par with resist-based sub-10 nm electron beam lithography, showing similar spatial resolutions at similar electron doses. Regarding ion beam lithography, there are several distinguishing issues. Sub-10 nm writing has yet to be demonstrated for ion deposition, and although the deposition rate is relatively low when writing with electrons, electrons do not induce damage to the sample. The latter is a crucial advantage for focused electron beam-induced deposition. Finally, the main challenges regarding the applicability of sub-10 nm focused electron beam-induced deposition are discussed.  相似文献   

17.
X-ray induced Auger electron spectroscopy can be applied to the chemical analysis of thin samples with a spatial resolution in the 10 μm range. The first experimental results obtained with various anode materials and various samples are reported. The signal intensities (in the range of 103 counts/s) are similar to those obtained by using a conventional electron spectrometer with a resolution in the millimeter range. Theoretical considerations together with the results obtained make it possible to evaluate the sensitivity of this technique and suggest how the spatial resolution can be improved further (20 μm at present, 2–3 μm in the near future). The radiation damage and sample thickness constraints of this new technique and of conventional Auger electron spectros- copy are compared. Application of X-ray induced Auger analysis to biological objects is suggested and the effect of the present results on scanning X-ray radiography and characteristic X-ray absorption microanalysis is also pointed out.  相似文献   

18.
李元杰  何小亮  孔艳  王绶玙  刘诚  朱健强 《物理学报》2017,66(13):134202-134202
提出了基于M?llenstedt电子双棱镜的电压扫描剪切干涉全场ptychographic iterative engine(PIE)显微成像技术.从低到高逐步改变电子双棱镜的电压,并同时记录所形成的剪切干涉条纹,待测样品透射电子束的强度和相位分布就可以用PIE算法得以快速重建,而且双棱镜的方向、位置和实际电场强度分布等诸多实验中不可避免地偏差都可以在迭代过程中自动得以更正.所提技术能够克服现阶段用电子束进行PIE成像的诸多技术困扰,从而有望推动PIE技术在电子显微成像领域的发展和应用.  相似文献   

19.
The magnetic domain structure in oriented Tb0.3Dy0.7Fe1.92 (Terfenol-D) is investigated by scanning electron acoustic microscopy (SEAM) in a wide frequency range from 75 to 530 kHz. Both secondary electron image and electron acoustic image can be obtained in situ simultaneously. By changing the modulation frequencies, the SEAM can be used as an effective nondestructive method to observe not only the surface topography and domain structure but also the subsurface domain structure and defects. The magnetic domain structure is verified by magnetic force microscopy (MFM). Furthermore, magnetic domains can be observed in both linear and nonlinear imaging modes by SEAM. The contributions to the image contrast are related to the signal generation through the piezomagnetic coupling mechanism, magnetostrictive coupling mechanism, and thermal-wave coupling mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号