首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
运用负值量子条件熵研究了双量子系统一类混合态的纠缠量度.给出了负值量子条件作为条件熵纠缠度的定义,证明了条件熵纠缠满足作为2×2系统一类混合纠缠态量度的四个基本条件.当双量子系统处于纯态时,条件熵纠缠度即为部分熵纠缠度.应用条件熵纠缠度研究了真空腔场中两全同二能级原子之间纯态和一类混合态纠缠的时间演化,比较了相同条件下两全同原子系统concurrence纠缠度的时间演化.结果表明,两纠缠度演化规律完全一致,验证了负值量子条件熵可以作为双量子系统纯态和一类混合态的纠缠量度. 关键词: 双量子系统 负值量子条件熵 条件熵纠缠度 混合态纠缠度  相似文献   

2.
周青春  祝世宁 《物理学报》2005,54(5):2043-2048
通过计算场的量子力学熵讨论了Λ型三能级原子与数态单模光场互作用系统的纠缠和退纠缠时间演化规律.结果表明,系统的纠缠呈现周期性,最大纠缠度依赖于原子初态、初始场光 子数及场失谐量与耦合系数之比.一周期内出现最大纠缠和退纠缠的次数与初始场光子数无 关.近简并下能级初始相对位相影响场熵演化,而激发态和基态之间的初始相对位相对场熵 演化无影响.  相似文献   

3.
与原子依赖强度耦合双模压缩真空态的量子纠缠   总被引:7,自引:3,他引:4  
在考虑原子与双模光场依赖强度耦合双光子共振相互作用的条件下,应用量子相对熵研究了双模压缩真空场模间纠缠度的演化.结果表明,在原子与光场相互作用之后,模间纠缠度作周期性的变化.在强场条件下,模间纠缠度总是在初始时刻达到最大值,其变化幅度基本保持不变.在初始场很弱的条件下,纠缠度演化的特点与原子初始状态有关,当原子处于激发态和基态的等概率叠加态时,纠缠度变化的幅度最大.控制原子与光场的作用时间及原子的初态,可以调整双模光场间的纠缠.  相似文献   

4.
二非正交纯态相混合的concurrence   总被引:5,自引:0,他引:5       下载免费PDF全文
导出了两量子比特中二非正交纯态相混合的concurrence 的明显表达式, 并作了验证. 推算表明,正交情形下的concurrence公式可以直接推广到非正交的情形. 讨论了两纯态相混合的最大纠缠混合态和一些重要特殊情形. 关键词: 量子纠缠 纯态 混合态 concurrence  相似文献   

5.
周青春  祝世宁 《物理学报》2005,54(5):2043-2048
通过计算场的量子力学熵讨论了∧型三能级原子与数态单模光场互作用系统的纠缠和退纠缠时间演化规律.结果表明,系统的纠缠呈现周期性,最大纠缠度依赖于原子初态、初始场光子数及场失谐量与耦合系数之比.一周期内出现最大纠缠和退纠缠的次数与初始场光子数无关.近简并下能级初始相对位相影响场熵演化,而激发态和基态之间的初始相对位相对场熵演化无影响.  相似文献   

6.
霍雅静  李军刚 《物理学报》2012,61(21):50-56
研宄了非马尔可夫噪声环境影响下两个量子比特纠缠的动力学行为.对比讨论了因式化纠缠在描述纠缠动力学演化的有效性.结果表明:对于贝尔态、最大纠缠混合态等特殊初态,当噪声环境的影响比较弱时,利用纠缠的因式化分解形式可以有效地刻画纠缠的动力学演化;对于一般初态的情况,当系统的纠缠比较大,噪声环境的影响比较弱时,纠缠的因式化分解形式也可以有效地刻画纠缠的动力学演化.  相似文献   

7.
利用负熵方法,研究了混合态运动原子与相干态光场相互作用系统的量子纠缠特性,讨论了原子初态、场模结构参数、相干场平均光子数、失谐量、跃迁光子数等物理参量对系统纠缠度的影响。结果表明:考虑原子运动时,系统纠缠度在整个时域范围内出现了规则的周期振荡。原子初态趋于纯态时系统纠缠度较高。随着相干场平均光子数的增大,系统纠缠度的峰值逐渐变小,规则振荡的周期不变。随着跃迁光子数的增大,系统纠缠度的峰值逐渐变大,振荡变得越来越快。随着失谐量的增大,系统纠缠度的峰值逐渐变小。  相似文献   

8.
利用负熵方法,研究了混合态运动原子与相干态光场相互作用系统的量子纠缠特性,讨论了原子初态、场模结构参数、相干场平均光子数、失谐量、跃迁光子数等物理参量对系统纠缠度的影响。结果表明:考虑原子运动时,系统纠缠度在整个时域范围内出现了规则的周期振荡。原子初态趋于纯态时系统纠缠度较高。随着相干场平均光子数的增大,系统纠缠度的峰值逐渐变小,规则振荡的周期不变。随着跃迁光子数的增大,系统纠缠度的峰值逐渐变大,振荡变得越来越快。随着失谐量的增大,系统纠缠度的峰值逐渐变小。  相似文献   

9.
基于具有两个近似简并基态(|g〉,|e〉)和一个激发态(|r〉)的三能级原子的两基态为静态量子比特,光子数态为飞行量子比特.两对非最大原子纠缠对中各有一个原子被分别囚禁在两个泄露腔中,在大失谐极限和激发态自发辐射系数γ远小于失谐量Δ的情况下,利用经典激光脉冲激发和与量子化腔场耦合作用后,通过对从腔中泄露出来的光子进行探测,可以将两对未知非最大原子纠缠态以一定的概率浓缩成最大纠缠态.充分考虑并且利用了腔的衰减,增强了实验的可行性和进行远距离的纠缠态浓缩的实现.  相似文献   

10.
运用全量子理论研究了初始处于Bell态(对称迭加态或反对称态)的两原子与双模纠缠相干光场相互作用系统中场熵的演化特性. 分析了光场强度、光场纠缠度及原子间相互作用强度对场熵演化特性的影响. 结果表明:原子初态处于反对称态时,场熵始终为零;原子初态处在对称迭加态时,增大光场强度场熵的时间演化曲线逐渐变成较规则的振荡曲线,原子间的相互作用强度对双原子间纠缠度有显著的非线性调制作用.  相似文献   

11.
Two atomic clusters, which have NA and Ns two-level atoms, respectively, are placed in a cavity but separated spatially. There is no direct interaction between the atoms. All the atoms interact with a single-mode of the cavity field. Quantum entanglement between the two atomic clusters is investigated for various initial states of the two atomic clusters and the field. When the cavity field is initially in a Fock state, we find that the time evolution of entanglement quasi-periodically oscillates regardless of the initial states of atoms. The oscillation period increases as the initial photon number increases. When all the atoms in both of the atomic clusters are initially in the excited state, we show that there is no entanglement between the atomic clusters with NA = NB = 1 regardless the initial state of the cavity field. However, when either NA or NB is larger than one, we find that the entanglement always exists even for a strong thermal field. In cases with different initial states of the atomic clusters, we notice that the entanglement becomes stronger as number of the atoms increases. When all the atoms in both of the clusters in the ground state, we also find that the entanglement can be enhanced even by a thermal field. We also notice that a single qubit can be entangled with multi-atoms which are initially in the ground state by the cavity field initially being in vacuum, thermal, coherent, and squeezed states.  相似文献   

12.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

13.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

14.
三能级原子与奇偶纠缠相干光作用的光场压缩   总被引:8,自引:2,他引:6  
方曙东  曹卓良 《光学学报》2005,25(12):697-1701
采用求解薛定谔方程和数值计算方法,研究了V型三能级原子与双模奇偶纠缠相干光场相互作用过程中的光场压缩效应,讨论了压缩效应与双模奇偶纠缠相干光场的纠缠程度、系统失谐量、双模光场的平均光子数和原子基态概率幅的依赖关系。结果表明:光场压缩效应与双模奇偶纠缠相干光场的纠缠程度、失谐量、平均光子数和原子初态相关联:双模纠缠相干光场处于非纠缠状态时的光场压缩量比光场处于纠缠状态时要大;原子处在单纯的基态或激发态时光场都有明显的压缩现象出现;而原子初态中基态和激发态的概率幅较接近时无光场压缩现象;无论光场是否处于纠缠态,只有两模平均光子数接近时,光场才会出现压缩效应。  相似文献   

15.
Alkaline-earth-like (AEL) atoms with two valence electrons and a nonzero nuclear spin can be excited to Rydberg state for quantum computing. Typical AEL ground states possess no hyperfine splitting, but unfortunately a GHz-scale splitting seems necessary for Rydberg excitation. Though strong magnetic fields can induce a GHz-scale splitting, weak fields are desirable to avoid noise in experiments. Here, we provide two solutions to this outstanding challenge with realistic data of well-studied AEL isotopes. In the first theory, the two nuclear spin qubit states |0〉 and |1〉 are excited to Rydberg states |r〉 with detuning Δ and 0, respectively, where a MHz-scale detuning Δ arises from a weak magnetic field on the order of 1 G. With a proper ratio between Δ and Ω, the qubit state |1〉 can be fully excited to the Rydberg state while |0〉 remains there. In the second theory, we show that by choosing appropriate intermediate states a two-photon Rydberg excitation can proceed with only one nuclear spin qubit state. The second theory is applicable whatever the magnitude of the magnetic field is. These theories bring a versatile means for quantum computation by combining the broad applicability of Rydberg blockade and the incomparable advantages of nuclear-spin quantum memory in two-electron neutral atoms.  相似文献   

16.
两原子与数态场相互作用系统中纠缠的调控   总被引:1,自引:1,他引:0  
廖庆洪  刘晔 《光学学报》2012,32(3):327002-307
通过计算并发度研究了两个处于初始激发态的两能级原子与数态场相互作用系统的纠缠动力学特性,并讨论了场的光子数、原子和场的失谐量以及原子操作对并发度的影响。结果表明当不存在原子操作时,两原子之间的纠缠出现突然产生现象,并且可以通过调节光子数和原子与场的失谐量来控制产生纠缠的阈值时间和纠缠的最大值。当存在原子操作时,两原子之间的纠缠随着时间的演化可以立即产生,而且通过对经典场的操作和控制可以实现两原子之间纠缠的调控。  相似文献   

17.
We discuss the generation of two two-level atoms entanglement inside a resonant microcavity under stimulated emission (STE) interaction. The amount of entanglement is studied based on different atomic initial states. For each kind of initial state, we obtain the entanglement period and the entanglement critical point, which are found to deeply depend on driving field density. If both atoms are initially in excited state, the entanglement can be induced due to STE. While when one of them initially lies in its ground state, we find there is a competition between driving field induced entanglement and STE induced entanglement. PACS number: 03.75. Gg 03.75. Lm.  相似文献   

18.
We analyze a controllable generation of maximally entangled mixed states of a circuit containing two-coupled superconducting charge qubits. Each qubit is based on a Cooper pair box connected to a reservoir electrode through a Josephson junction. Illustrative variational calculations were performed to demonstrate the effect on the two-qubits entanglement. At sufficiently deviation between the Josephson energies of the qubits and/or strong coupling regime, maximally entangled mixed states at certain instances of time is synthesized. We show that entanglement has an interesting subsequent time evolution, including the sudden death effect. This enables us to completely characterize the phenomenon of entanglement sharing in the coupling of two superconducting charge qubits, a system of both theoretical and experimental interest.  相似文献   

19.
We present studies of thermal entanglement of a three-spin system in triangular symmetry. Spin correlations are described within an effective Heisenberg Hamiltonian, derived from the Hubbard Hamiltonian, with super-exchange couplings modulated by an effective electric field. Additionally a homogenous magnetic field is applied to completely break the degeneracy of the system. We show that entanglement is generated in the subspace of doublet states with different pairwise spin correlations for the ground and excited states. For the doublets with the same spin orientation one can observe nonmonotonic temperature dependence of entanglement due to competition between entanglement encoded in the ground state and the excited state. The mixing of the states with an opposite spin orientation or with quadruplets (unentangled states) always monotonically destroys entanglement. Pairwise entanglement is quantified using concurrence for which analytical formulae are derived in various thermal mixing scenarios. The electric field plays a specific role – it breaks the symmetry of the system and changes spin correlations. Rotating the electric field can create maximally entangled qubit pairs together with a separate spin (monogamy) that survives in a relatively wide temperature range providing robust pairwise entanglement generation at elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号