首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
宋立伟  李闯  王丁  许灿华  冷雨欣  李儒新 《物理学报》2011,60(5):54206-054206
利用光参量放大过程输出的闲置光载波-包络相位(CEP)被动稳定的特点,搭建了三级光参量放大(OPA)系统,获得了CEP稳定的近红外高能量超短激光脉冲(1.4 mJ/40 fs/1 kHz @ 1.8 μm),其CEP抖动为516 mrad(rms).经空心光纤展宽光谱和块体材料补偿色散,激光脉宽最终可被压缩至小于两个光学周期(<12 fs),脉冲能量达到0.54 mJ.该系统为单个阿秒脉冲的产生和其他高次谐波实验提供了优质的光源. 关键词: 光参量放大 周期量级近红外激光脉冲 载波-包络相位稳定  相似文献   

2.
描述了利用双光路自参考技术测量红外飞秒脉冲载波包络相移的方法,并通过建立的红外飞秒脉冲载波包络相移测量装置,实验测量了自主搭建的可调谐光学参量放大系统输出的红外飞秒激光脉冲的载波包络相移.对于1.6 μm的激光脉冲,测量得到在100 s内其相位抖动为115 mrad(rms).实验结果表明双光路法具有易于调节、测量方便、应用性强等优点. 关键词: 飞秒激光测量 自参考技术 双光路 载波包络相位  相似文献   

3.
A compact system for the generation of few-cycle multi-mJ Carrier Envelope Phase (CEP) stabilized pulses is presented. At the output 1.9?mJ, 5.7?fs pulses were achieved after hollow fiber compression (HFC) of 5?mJ, 25?fs circularly-polarized pulses from a Ti:sapphire multipass chirped pulse amplifier (CPA). Polarization control of the generated pulses was done using all reflective phase retarders which can be nearly arbitrarily scaled for increasing energies. The CEP noise from the amplifier system is shown to be 190?mrad rms over a period of more than 7?hours. The full system, i.e., oscillator, amplifier, CEP stabilization, and HFC is compact enough to fit on a standard optical table.  相似文献   

4.
We show that a standard hollow-core fiber (HCF) compressor device can be used to efficiently compress multi-mJ energy laser pulses down to few-cycle duration, when seeded with linearly chirped, circularly polarized pulses. With this approach, we routinely generate carrier-envelope phase (CEP)-locked, 1.6 mJ, 4.8 fs pulses using only 3 mJ, 25 fs pulses as the seed.  相似文献   

5.
We report the routine generation of sub-5-fs laser pulses with 1-mJ energy and stable carrier–envelope phase at 1-kHz repetition rate, obtained by compressing the multi-mJ output from a phase-locked Ti:sapphire amplifier in a rare-gas-filled hollow fiber. The dual-stage amplifier features a hybrid transmission grating/chirped mirror compressor providing 2.2-mJ, 26-fs pulses at 1 kHz with standard phase deviation of 190 mrad rms. We demonstrate hour-long phase stability without feedback control of grating position or rigorous control of the laser environment, simply by using small pulse stretching factors in the amplifier, which minimize the beam pathway in the compressor. The amplifier also integrates a versatile AOPDF (acousto-optic programmable dispersive filter) for closed-loop spectral phase optimization. The various factors influencing the overall phase stability of the system are discussed in detail. Using the optimized output, 1-mJ, 4.5-fs pulses are generated by seeding the neon gas filled hollow fiber with a circularly polarized input beam. A standard phase deviation of 230 mrad after the HCF is obtained by direct f-to-2f detection and slow-loop feedback to the oscillator locking electronics without any additional spectral broadening.  相似文献   

6.
We have stabilized the carrier-envelope phase (CEP) of amplified femtosecond laser pulses from a grating-based chirped-pulse amplification femtosecond laser by the direct locking method. Long-term CEP stabilization in the oscillator was achieved by employing a double-feedback loop to control both the pumping power and the cavity dispersion. Large CEP drift, induced during amplification, was compensated by adjusting the grating separation in the pulse compressor, and the CEP stabilization was maintained for four hours with a phase jitter of about 180 mrad. After pulse compression to 5.5-fs pulses in a filamentation pulse compressor, CEP-stabilized laser pulses were applied for high-harmonic generation to confirm the CEP stabilization.  相似文献   

7.
This paper represents a systematic investigation of detection shot noise in carrier‐envelope phase (CEP) stabilization. Numerical simulations are conducted to calculate the influence of shot noise in laser oscillators. These results are compared with experimental results for Ti:sapphire lasers. It is found that shot noise imposes a limitation for obtaining sub‐100 mrad CEP jitters. Careful interferometer design is necessary to push this limit toward 10 mrad. In contrast to oscillator stabilization, shot noise appears to play a much more restrictive role in amplifier stabilization. Using spectral interferometry together with spectral broadening in sapphire, it already appears practically challenging to reach sub‐100 mrad jitters. Adaption of the optical nonlinearity in the broadening step appears key to further improvements of the CEP jitter of amplified systems. We believe that these improvements open a perspective for currently unfeasible applications of CEP stabilized pulses. Moreover, our considerations can be easily adapted to CEP stabilization of other laser types beyond Ti:sapphire.  相似文献   

8.
We have constructed a compact and robust optical frequency standard based around iodine vapor loaded into the core of a hollow-core photonic crystal fiber (HC-PCF). A 532 nm laser was frequency locked to one hyperfine component of the R(56) 32-0 (127)I(2) transition using modulation transfer spectroscopy. The stabilized laser demonstrated a frequency stability of 2.3×10(-12) at 1 s, almost an order of magnitude better than previously reported for a laser stabilized to a gas-filled HC-PCF. This limit is set by the shot noise in the detection system. We present a discussion of the current limitations to the performance and a route to improve the performance by more than an order of magnitude.  相似文献   

9.
Thai A  Hemmer M  Bates PK  Chalus O  Biegert J 《Optics letters》2011,36(19):3918-3920
An all-optical and passively carrier-to-envelope-phase-stabilized (CEP-stabilized) optical parametric chirped pulse amplification (OPCPA) system is demonstrated with sub-250-mrad CEP stability over 11 min and better than 100 mrad over 11 s. This is achieved without any electronic CEP stabilization loop for 160 kHz pulse repetition rate in the few cycle regime.  相似文献   

10.
Here, 200 fs 6 mJ pulses from a cw diode-pumped Yb,Na:CaF(2) amplifier are spectrally broadened in an Ar- or Ne-filled hollow-core fiber and recompressed to 20 fs (Ar) and 35 fs (Ne) using a prism pair. The results of spectral broadening and phase measurement are in excellent agreement with numerical modeling based on the generalized nonlinear Schr?dinger equation. The longer laser wavelength of 1030 nm permits favorable energy scaling for the hollow-fiber technique compared to ultrafast amplifiers operating at 800 nm.  相似文献   

11.
尤良芳  令维军  李可  张明霞  左银燕  王屹山 《物理学报》2014,63(21):214203-214203
基于单个BBO非线性晶体,利用非共线光参量放大技术,研究了载波包络相位稳定的高效率可调谐近红外脉冲产生.以载波包络相位稳定的飞秒激光放大系统产生的白光作为种子光,注入一个二类匹配的二级光参量放大器,在1350 nm波段获得抽运-信号光34%的转换效率.利用f—2f光谱相干测量技术,放大脉冲载波包络相位的抖动30 min内小于137 mrad.该方法提供了一种简单高效的载波包络相位稳定的红外脉冲产生技术.  相似文献   

12.
Laser-driven, quasimonoenergetic electron beams of up to approximately 200 MeV in energy have been observed from steady-state-flow gas cells. These beams emitted within a low-divergence cone of 2.1+/-0.5 mrad FWHM display unprecedented shot-to-shot stability in energy (2.5% rms), pointing (1.4 mrad rms), and charge (16% rms) owing to a highly reproducible gas-density profile within the interaction volume. Laser-wakefield acceleration in gas cells of this type provides a simple and reliable source of relativistic electrons suitable for applications such as the production of extreme-ultraviolet undulator radiation.  相似文献   

13.
The gas-filled hollow-core fiber compression and the optical filamentation technique are compared experimentally in a parameter regime suitable for intense few-cycle pulse generation. In particular, pointing stability, spectral properties, and spatial chirp are investigated. It is found that in the case of filamentation, the critical parameter for pointing stability is gas pressure inside the generation cell whereas for the hollow-core fiber it is alignment that plays this role. The hollow-core fiber technique yields spectra that are better suited for chirped-mirror pulse compression whereas filamentation offers higher throughput and prospects for easy-to-implement self-compression. We present spectral phase interferometry for direct electric-field reconstruction (SPIDER) measurements that directly show the transition in the spectral phase of the output continua into the self-compression regime as the gas pressure is increased. PACS 42.65.Re; 42.65.Jx; 42.65.Tg  相似文献   

14.
A mid-infrared laser absorption sensor was developed for gas temperature and carbon oxide (CO, CO2) concentrations in high-enthalpy, hydrocarbon combustion flows. This diagnostic enables non-intrusive, in situ measurements in harsh environments produced by hypersonic propulsion ground test facilities. The sensing system utilizes tunable quantum cascade lasers capable of probing the fundamental mid-infrared absorption bands of CO and CO2 in the 4–5 µm wavelength domain. A scanned-wavelength direct absorption technique was employed with two lasers, one dedicated to each species, free-space fiber-coupled using a bifurcated hollow-core fiber for remote light delivery on a single line of sight. Scanned-wavelength modulation spectroscopy with second-harmonic detection was utilized to extend the dynamic range of the CO measurement. The diagnostic was field-tested on a direct-connect scramjet combustor for ethylene–air combustion. Simultaneous, laser-based measurements of carbon monoxide and carbon dioxide provide a basis for evaluating combustion completion or efficiency with temporal and spatial resolution in practical hydrocarbon-fueled engines.  相似文献   

15.
We experimentally demonstrated a new few-cycle pulse compression technique through the cascade of bulk media and hollow-core fiber (HCF) and this compression system has been intensively studied. The pulses with the duration of ∼5 fs and the energy of 0.33 mJ near 800 nm have been generated by compressing the ∼40 fs input pulse from a commercial laser system. In principle, this technique allows compression of pulses with duration of picoseconds to a few cycles (sub-7 fs) and the output can be above 1 mJ.  相似文献   

16.

The radiation of high-gain short-wavelength free-electron laser depends on the slice transverse emittance of the electron bunch. This essay introduces the method of slice emittance measurement, and shows the brief setup of this experiment using the solenoid scanning and RF deflecting cavity at Tsinghua University. The preliminary experimental results show that the slice rms emittance of the electron bunch generated by photocathode RF gun has considerable variations along the bunch and is typically less than 0.55 mm mrad for the laser rms radius of 0.4 mm.

  相似文献   

17.
We analyze in detail the frequency noise properties of a grating enhanced external cavity diode laser (GEECDL). This system merges two diode laser concepts, the grating stabilized diode laser and the diode laser with resonant optical feedback, thus combining a large tuning range with an excellent short-term frequency stability. We compare the frequency noise spectrum of a GEECDL to that of a grating stabilized diode laser and demonstrate a 10-fold reduction of the frequency noise linear spectral density. The GEECDL is phase locked to a similar laser and to a fs-frequency comb with a servo loop providing an open-loop unity-gain frequency of only 237 kHz, which is a tenth of the bandwidth typically required for grating stabilized diode lasers. We achieve a residual rms phase error as small as 72 mrad (≈ 200 mrad) for stabilization to a similar laser (to the fs-frequency comb). We demonstrate that the novel diode laser can phase-coherently track a stable optical reference with an instability of 1.8×10-16 at 1 s. This laser system is well suited for applications that require phase locking to a low-power optical reference under noisy conditions. It may also be considered for the implementation of optical clock lasers. PACS 42.55.Px; 42.60.Jf; 42.50.Gy  相似文献   

18.
We report the first demonstration of group delay tuning with stimulated Raman scattering-induced dispersion in a hydrogen-filled hollow-core optical fiber. A pump laser induces a sharp refractive index change near the S_0(0)Raman transition of hydrogen molecules, enabling the control of the group velocity of signal pulses around the Stokes wavelength. Experiments with an 80-m-long hollow-core fiber filled with 2.5 bar hydrogen achieved continuous tuning of the pulse delay up to 1.42 ns by varying the Raman amplification from 0 to 10 dB. The tunable pulse delay is realized by changing the pump power as well as the hydrogen pressure. This work provides a new technique for controlling the pulse propagation in optical fibers with high flexibility.  相似文献   

19.
黄羽  王明常 《光学学报》1996,16(10):493-1496
介绍了对一台脉冲线加速器驱动虚火花放电装置产的电子束发射度的测量工作。在十隙虚火花放电室中育以15Pa的氮气,产生能量为约200keV,束流2000A,直径为1mm和高亮度电子束。在距阳极5cm处测得电子束的均方根发射度εrms≈48mm.mrad,规一化发射率εn≈47mm.mrad。  相似文献   

20.
A novel hollow-core tapered coupler has been theoretically designed and fabricated by fiber drawingmachine. The coupler's inner wall is coated with a polycrystalline GeO_2 film. The coupling loss ofhollow-core tapered coupler is about 0.2 dB. Hollow-core tapered coupler reduces the transmission loss ofhollow-core optical fiber(HCOF) by 0.5 dB/m, therefore the coupler is suitable for coupling high powerCO_2 laser in industrial application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号