首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is shown that, in hydrodynamic noise measurements in the presence of acoustic noise acting upon the pressure fluctuation receiver, spatial filtering methods should provide the best results. Active methods are developed for suppressing the acoustic noise that affects a miniature receiver in the course of turbulent pressure fluctuation measurements. The methods are based on complicating the structure of the measuring transducer by introducing an extra compensating sensing element whose characteristics are identical with those of the main sensing element. The spatial filtering of small-scale turbulent pressure fluctuations by a finite-size electroacoustic transducer is used as the basis for the development of noise-compensated measuring systems, as well as methods of measuring the turbulent pressure fluctuations by receivers with noise compensation. A numerical study of the wave-number filtering of acoustic noise in wall pressure measurements by a noise-compensated receiver is performed.  相似文献   

2.
The problems of spatial filtering of turbulent aerohydrodynamic noise sources are considered in connection with the problem of the direct measurements of wave number-frequency spectra of turbulent pressure fluctuations. The methods of wave-vector filtering of turbulent pressure fluctuations with the use of an acoustic array, i.e., a periodic structure with a finite number of elementary rectangular pressure transducers, are analyzed. Original versions of the wave number-frequency spectrum analyzer that allows the reconstruction of the wave number spectrum from the results of measurements are developed. The filtering characteristics of such analyzers are studied, and the relation between the wave number characteristic of an acoustic array and the wave number spectrum of the amplitude distribution of transducer’s local sensitivity over the aperture is determined.  相似文献   

3.
Methods of experimental spatial filtering of wall pressure fluctuations beneath a turbulent boundary layer are developed with the aim of obtaining information on the wave number-frequency spectrum. The spatial filtering of the pressure field components by wave-vector filters is studied. The method of spatial filtering of pressure fluctuations by an acoustic array, i.e., a periodic structure with a finite number of elementary transducers, is analyzed. The relation between the wave number characteristic of the acoustic array and the wave number spectrum of the amplitude distribution of transducer’s local sensitivity is determined. Quantitative estimates are obtained for the sensitivity of the array to the wave number spectrum of turbulent boundary-layer pressures, which is necessary for measuring the wall pressure fluctuations in a turbulent boundary layer by wave-vector filters.  相似文献   

4.
The wall pressure fluctuations in turbulent boundary layers play an important role in acoustic measurements carried out in moving media. Results of measuring the frequency spectra of wall pressure fluctuations around a surfacing device are presented. The spatial resolution achieved in measuring the wall pressure fluctuations is investigated. It is demonstrated that the results of hydrodynamic flow noise measurements strongly depend on the aperture size of the measuring acoustic transducer and its orientation in the turbulent boundary layer. The pseudosound pressure fluctuation spectra observed in a series of experiments with surfacing devices show that the resolution of the pressure receivers operating in the turbulent boundary layers considerably varies. On the basis of systematic measurements of wall pressure fluctuations by miniature and distributed receivers at high Reynolds numbers, the effect of the geometric dimensions of a pressure receiver on its resolution in the flow noise measurements is studied. An experimental method is proposed for estimating the receiver-induced distortions.  相似文献   

5.
The methods proposed earlier for measuring the wave number-frequency spectrum of wall pressure fluctuations beneath a turbulent boundary layer are considered: the spatial filtering of the pressure field components by special-purpose transducers (wave filters) and the digital processing of signals obtained from an array of transducers. It is shown that, for the wave filters, transducers with a rectangular shape of sensitive surface rather than those with a circular one are necessary. Results of measuring the wave number-frequency spectrum of turbulent pressure fluctuations in a low-noise wind tunnel are presented. The measurements are performed with the use of four wave filters consisting of rectangular transducers with a constant sensitivity distribution over their surfaces. The mathematical model of the wave number-frequency spectrum proposed earlier by the authors is compared with the measurement data reported by Abraham and Keith. The model is used for processing the results of measurements in the wind tunnel. The measured spectra are compared with the data obtained by Martin and Leehey.  相似文献   

6.
This paper investigates the wind noise pressure spectra measured by aerodynamically designed devices in turbulent flow. Such measurement probes are often used in acoustic measurements in wind tunnels to reduce the pressure fluctuations generated by the interaction of the devices with the incident flow. When placed in an outdoor turbulent environment however, their performance declines noticeably. It is hypothesized that these devices are measuring the stagnation pressures generated by the cross flow components of the turbulence. Predictions for the cross flow contribution to the stagnation pressure spectra based on measured velocity spectra are developed, and are then compared to the measured pressure spectra in four different probe type devices in windy conditions outdoors. The predictions agree well with the measurements and show that the cross flow contamination coefficient is on the order of 0.5 in outdoor turbulent flows in contrast to the published value of 0.15 for measurements in a turbulent jet indoors.  相似文献   

7.
Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.  相似文献   

8.
The effect of hydrodynamic fluctuations on noise in molecular electronic transducers is studied. It is shown that turbulent pulsation also makes a considerable contribution to the self-noise of molecular elec-tronic transformers, along with laminar flow fluctuations. A method for qualitative and quantitative calculation of the noise induced by turbulent pulsation that arises when a liquid flows along the electrode surface is proposed. A quantitative relationship that relates the rms pressure pulsation to the liquid head and an expression for the total spectral density of the hydrodynamic noise in molecular electronic transducers are obtained.  相似文献   

9.
Simple models of the characteristic functional are considered in the context of analyzing the probabilistic characteristics of turbulent pressure fluctuations. The Gaussian model of the spatial characteristic functional of wall-pressure fluctuations is shown to be more appropriate for jet flows, while the Poisson model better describes the characteristic features (splashes) of pressure fluctuations in a turbulent boundary layer. The suggestion is made that the representation of the characteristic functional as a superposition of simple models can reduce the experimental determination of the characteristic functional and the multidimensional distribution functions to measuring only a limited number of parameters and dependences characterizing the turbulent flow under study.  相似文献   

10.
再入体缩比模型湍流等离子体电磁散射特性测量   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了在弹道靶上利用二级轻气炮发射再入体缩比模型开展湍流等离子体电磁散射特性模拟试验方法、湍流等离子体的雷达散射截面积(RCS)测量方法。给出了模型尾迹湍流等离子体的电磁散射特性测量典型试验结果,对获得的试验结果进行了分析,并与一阶畸变波Born方法计算结果进行了比较。结果表明:合理选择缩比模型发射速度和飞行环境压力,在弹道靶上能够模拟产生湍流等离子体;利用激光阴影成像技术获得的锥模型尾迹流场图像证实了尾迹转捩的出现及其湍流形成;在给定的试验条件下,锥模型及其绕流RCS测量值比其尾迹RCS测量值高3个数量级,比背景散射电平高0.5~2.5个数量级,且信号没有周期性,幅度脉动范围为1~15dB,频率脉动范围0.4~40kHz;锥模型湍流尾迹RCS的脉动可能是尾迹电子密度的脉动引起的;单站X波段雷达系统测量的锥模型尾迹亚密湍流等离子体的散射信号测量值与计算结果变化规律一致;弹道靶RCS测量技术可用于再入体缩比模型湍流等离子体电磁散射特性研究,为开展相关研究提供了一种有效的地面模拟实验研究途径。  相似文献   

11.
The self-noise in cavity is tested in the circling tank,prediction method of cavity's self-noise induced by turbulent boundary layer is established.The window's vibration is using the simply supported boundary condition,the sound wave in the cavity is expanded using the rigid wall boundary condition,the modal coupling vibration equation between them is established using the radiation boundary condition.The turbulent boundary layer pulsating pressure is random,the self-noise power spectrum in the cavity is solved.Test of self-noise and turbulent pressure is carried out in the circling tank when the flow velocity is 5 m/s and 8 m/s,the result verifies that the theoretical method can predict the real cavity's hydrodynamic noise approximately,the trends are similar,this provides one analytical method for sonar dome's material selection and noise control.  相似文献   

12.
循环水槽中试验测量了腔体内水动力自噪声,并与模态法建立的湍流脉动压力引起腔体自噪声预报进行比较验证。透声窗振动以简支边界为条件,腔体内部声波以刚性边界为条件模态展开,通过辐射边界条件建立模态耦合振动方程。在随机湍流脉动压力作用下,推导了模态振动方程在随机力激励下的自噪声功率谱响应。对循环水槽中5 m/s和8 m/s两种流速工况下的腔体水动力自噪声和湍流脉动压力进行了测试,结合测量的脉动压力预报方法可以计算腔体水动力自噪声量值,理论预报与试验测量结果大致吻合,趋势一致,为声呐罩材料选取及声学环境控制提供了一种分析方法。   相似文献   

13.
An improvement of the Force Analysis Technique (FAT), an inverse method of vibration, is proposed to identify the low wavenumbers including the acoustic component of a turbulent flow that excites a plate. This method is a significant progress since the usual techniques of measurements with flush-mounted sensors are not able to separate the acoustic and the aerodynamic energies of the excitation because the aerodynamic component is too high. Moreover, the main cause of vibration or acoustic radiation of the structure might be due to the acoustic part by a phenomenon of spatial coincidence between the acoustic wavelengths and those of the plate. This underlines the need to extract the acoustic part. In this work, numerical experiments are performed to solve both the direct and inverse problems of vibration. The excitation is a turbulent boundary layer and combines the pressure field of the Corcos model and a diffuse acoustic field. These pressures are obtained by a synthesis method based on the Cholesky decomposition of the cross-spectra matrices and are used to excite a plate. Thus, the application of the inverse problem FAT that requires only the vibration data shows that the method is able to identify and to isolate the acoustic part of the excitation. Indeed, the discretization of the inverse operator (motion equation of the plate) acts as a low-pass wavenumber filter. In addition, this method is simple to implement because it can be applied locally (no need to know the boundary conditions), and measurements can be carried out on the opposite side of the plate without affecting the flow. Finally, an improvement of FAT is proposed. It regularizes optimally and automatically the inverse problem by analyzing the mean quadratic pressure of the reconstructed force distribution. This optimized FAT, in the case of the turbulent flow, has the advantage of measuring the acoustic component up to higher frequencies even in the presence of noise.  相似文献   

14.
A technique is developed for measuring the intensity of the frequency-wave spectrum components of wall pressure fluctuations of the turbulent boundary layer in a quiet aeroacoustic installation with the use of wave filters in the form of rectangular plates. Aluminium-alloy and organic-glass plates of various thickness under a fine-meshed screen are used, set up rigidly flush with the polished wall of the working part of the installation. The experimental data testify to the fundamental possibility of determining the field components of wall pressure fluctuations of the turbulent boundary layer using similar wave filters in the subconvective region, where a substantially lower pressure fluctuation intensity is observed in comparison to the intensity in the region of the convective maximum of the frequency-wave spectrum at a small flow velocity.  相似文献   

15.
16.
Boundary-layer transition has been expected to be an important contributor to sensor flow-induced self-noise. The pressure fluctuations caused by this spatially bounded, and intermittent, phenomenon encompass a very wide range of wavenumbers and temporal frequencies. Here, we analyze the wavevector–frequency spectrum of the wall pressure fluctuations due to subsonic boundary-layer transition as it occurs on a flat plate under zero-pressure gradient conditions. Based on previous measurements of the statistics of the boundary-layer intermittency, it is found that transition induces higher low-streamwise wavenumber wall pressure levels than does a fully developed turbulent boundary layer that might superficially exist at the same location and at the same Reynolds number. The transition zone spanwise wavenumber pressure components are virtually unchanged from the fully developed turbulent boundary-layer case. The results suggest that transition may be more effective than the fully developed turbulent boundary layer in forcing structural excitation at low Mach numbers, and it may have a more intense radiated noise contribution. This may help explain increases in measured sensor self-noise when the sensors are placed near the transition zone. We believe, based on the presented analytical calculation and numerical simulation, that the rapid growth and subsequent decay of turbulent spots in the intermittent transition zone causes the higher low-(streamwise) wavenumber spectra.  相似文献   

17.
The influence of stiffeners on plate vibration and noise radiation induced by turbulent boundary layers is investigated by wind tunnel measurements. Plates with and without stiffeners are tested under the flow speed of 60 m/s, 71 m/s and 86 m/s, respectively. The stiffeners are set either perpendicular or parallel to the direction of the free stream. Measured vibration and noise levels are compared with theoretical calculations, where wall pressure cross-spectra are described by the Corcos model. For the plates tested, it is evident that stiffeners perpendicular to the direction of the free stream could increase noise radiation, but have almost no influence on vibration level of plates.  相似文献   

18.
It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz.  相似文献   

19.
20.
本文介绍了对国产300吨/时锅炉燃烧噪音和炉内气压波动的测试情况,在测试中用磁带记录仪记录燃烧噪音和炉内压力波动信号,然后进行了频谱分析。结果表明,燃烧噪音的大小和炉墙振动的大小都随着负荷增加而增加,这表明了燃烧动力学是引起炉墙结构振动的主要原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号