首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
概述了制冷射频前端的组成,对其中关键器件真空窗及隔热波导组件、低温低噪声放大器和超导滤波器的设计进行描述。给出了真空窗及隔热波导组件、低温低噪声放大器和超导滤波器主要性能测试实例,制冷射频前端主要指标噪声温度≤10 K,带外抑制≥120 dB。  相似文献   

2.
刘昌  李瀚宇  鲍献丰  周海京 《强激光与粒子束》2021,33(12):123016-1-123016-6
针对接收机射频前端在电磁脉冲环境作用下的电磁损伤过程模拟问题,以超短波接收机为具体研究对象,基于超外差式接收机电路功能模型,采用Verilog-a和SPICE网表联合建模方法,建立了射频前端低噪声放大器(LNA)电磁脉冲效应仿真模型(Extended LNA Model),并通过S参数仿真和瞬态仿真验证了LNA电磁脉冲效应模型具备正常功能仿真能力;为验证该模型的电磁脉冲损伤模拟能力,以标准电磁脉冲波形作为激励,以偶极子天线作为简化的天线前门耦合通道,在不同强度电磁脉冲作用下,接收机中频电路信号输出表现出了无影响、干扰、损毁的电磁脉冲效应过程,说明了建模方法的有效性;最后以EMP-天线耦合电压峰值作为阈值指标,分析得到了超短波接收机不同电磁脉冲效应等级对应的电压峰值阈值数据。  相似文献   

3.
基于MAX2740射频接收前端提供了从天线到数字化输入之间完备的GPS接收方案,信号通道包括了低噪声放大器(LNA)、两级下变频器、可变增益/固定增益放大器、压控振荡器(VCO)及频率合成器等。  相似文献   

4.
基于光相位调制的核信号读出方法将探测器信号调制进光纤中,并使用光纤作为模拟信号的传输介质。在该读出方案中,调制驱动模块负责载波信号的产生及放大,是该方案读出电子学系统的重要组成部分。为了产生低相位噪声,幅度大且幅度可调的载波信号,本工作提出了基于锁相环的载波产生电路和基于MMIC射频放大器的载波放大电路的设计方案,该方案结构简单,尺寸小,性能优异。对载波产生电路使用了ADIsimPLL仿真软件进行了环路滤波器的设计和仿真,同时也对载波放大电路使用ADS仿真软件进行了设计和仿真,并在实验室条件下进行了测试。测试结果表明,输出26 dBm载波信号相位噪声好于–110 dBc/Hz@100 kHz,能够用于信号解调。  相似文献   

5.
介绍了一种小型集成化、低漏热和高可靠性空间用高温超导接收前端的结构设计与仿真分析。首先阐述了空间用高温超导接收前端的整机组成,并对固定安装、制冷机、真空杜瓦进行结构优化设计;然后提出一种高温超导滤波放大器件与斯特林制冷机集成时的柔性连接及高效传热设计,并通过有限元优化分析得出最优支撑结构方案;最后对接收前端进行热真空试验模拟仿真。  相似文献   

6.
霍年鑫 《低温与超导》2007,35(5):443-445
介绍了3 cm低噪声接收前端的设计方法及为使其小型化应用使用了芯片GaAS MMIC混频器,并使用MWO软件对低噪声放大器电路进行了仿真。仿真数据和实测结果都表明,所设计的放大器具有较低的噪声和带内起伏,接收前端具有较高的镜像抑制度及良好的带外抑制。  相似文献   

7.
介绍了超导接收前端提升雷达装备抗干扰能力的技术原理,对比分析了前端中采用窄带超导预选滤波器组与采用常规预选滤波器的优劣势,完成了试验验证,展示了其应用效果。  相似文献   

8.
介绍了Ka波段低温低噪声放大器的设计和试验结果。在物理温度小于20K的环境下,噪声温度小于23K,输入输出回波损耗小于-12dB,0100GHz内无条件稳定。该组件将用于接收系统中的低温接收前端,能提高雷达的灵敏度和有效作用距离。  相似文献   

9.
针对微电容超声换能器的输出信号特征及检测要求,文中设计了换能器的微弱信号处理电路,包括基于跨阻的微弱电流信号检测和多重反馈带通滤波电路。通过搭建水下测试平台,对电路性能及功能进行实际测试,并进行水下测距实验。实验结果表明,该电路可对微电容超声换能器输出的400 k Hz信号进行检测放大与滤波;电路的线性度为0.18%,滤波电路中心频率为396 k Hz,带宽为55 k Hz。该电路可用于CMUT的接收信号处理并应用于超声测距及成像的前端信号处理。  相似文献   

10.
介绍了一种多信道高温超导接收前端的设计方案。首先阐述了多信道高温超导接收前端的使用领域和实际意义,以及设计所要考虑的因素及总体方案构成;针对多信道高温超导接收前端的微波部分、制冷部分、以及电源与控制系统的设计,同时结合系统中关键件的建模设计和仿真,并结合验证结果,联试试验验证了多信道高温超导接收前端良好的工程应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号