首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
This paper presents calculating results of the two-dimensional electron gas (2DEG) distributions in AlGaN/GaN material system by solving the Schroedinger and Poisson equations self-consistently. Due to high 2DEG density in the AlGaN/GaN heterojunction interface, the exchange correlation potential should be considered among the potential energy item of Schroedinger equation. Analysis of the exchange correlation potential is given. The dependencies of the conduction band edge, 2DEG density on the Al mole fraction are presented. The polarization fields have strong influence on 2DEG density in the AlGaN/GaN heterojunction, so the dependency of the conduction band edge on the polarization is also given.  相似文献   

2.
A new A1GaN/A1N/GaN high electron mobility transistor (HEMT) structure using a compositionally step-graded A1GaN barrier layer is grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The structure demonstrates significant enhancement of two-dimensional electron gas (2DEG) mobility and smooth surface morphology compared with the conventional HEMT structure with high A1 composition A1GaN barrier. The high 2DEG mobility of 1806 cm2/Vs at room temperature and low rms surface roughness of 0.220 nm for a scan area of 5μm×5 μm are attributed to the improvement of interracial and crystal quality by employing the stepgraded barrier to accommodate the large lattice mismatch stress. The 2DEG sheet density is independent of the measurement temperature, showing the excellent 2DEG confinement of the step-graded structure. A low average sheet resistance of 314.5Ω/square, with a good resistance uniformity of 0.68%, is also obtained across the 50 mm epilayer wafer. HEMT devices are successfully fabricated using this material structure, which exhibits a maximum extrinsic transconductance of 218 mS/ram and a maximum drain current density of 800 mA/mm.  相似文献   

3.
Low-temperature photoluminescence measurement is performed on an undoped AlxGa1-xN/GaN heterostructure. Temperature-dependent Hall mobility confirms the formation of two-dimensional electron gas (2DEG) near the heterointerface. A weak photoluminescence (PL) peak with the energy of - 79meV lower than the free exciton (FE) emission of bulk GaN is related to the radiative recombination between electrons confined in the triangular well and the holes near the fiat-band region of GaN. Its identification is supported by the solution of coupled one-dimensional Poisson and Schr6dinger equations. When the temperature increases, the red shift of the 2DEG related emission peak is slower than that of the FE peak. The enhanced screening effect coming from the increasing 2DEG concentration and the varying electron distribution at two lowest subbands as a function of temperature account for such behaviour.  相似文献   

4.
张金风  毛维  张进城  郝跃 《中国物理 B》2008,17(7):2689-2695
To reveal the internal physics of the low-temperature mobility of two-dimensional electron gas (2DEG) in Al- GaN/GaN heterostructures, we present a theoretical study of the strong dependence of 2DEG mobility on Al content and thickness of AlGaN barrier layer. The theoretical results are compared with one of the highest measured of 2DEG mobility reported for AlGaN/GaN heterostructures. The 2DEG mobility is modelled as a combined effect of the scat- tering mechanisms including acoustic deformation-potential, piezoelectric, ionized background donor, surface donor, dislocation, alloy disorder and interface roughness scattering. The analyses of the individual scattering processes show that the dominant scattering mechanisms are the alloy disorder scattering and the interface roughness scattering at low temperatures. The variation of 2DEG mobility with the barrier layer parameters results mainly from the change of 2DEG density and distribution. It is suggested that in AlGaN/GaN samples with a high Al content or a thick AlGaN layer, the interface roughness scattering may restrict the 2DEG mobility significantly, for the AlGaN/GaN interface roughness increases due to the stress accumulation in AlGaN layer.  相似文献   

5.
何慧卉  杨身园 《中国物理 B》2022,31(1):17104-017104
Using first-principles calculations based on density functional theory,we have systematically studied the influence of in-plane lattice constant and thickness of slabs on the concentration and distribution of two-dimensional hole gas(2 DHG)in AlN/GaN superlattices.We show that the increase of in-plane lattice constant would increase the concentration of 2 DHG at interfaces and decrease the valence band offset,which may lead to a leak of current.Increasing the thickness of AlN and/or decreasing the thickness of GaN would remarkably strengthen the internal field in GaN layer,resulting in better confinement of 2 DHG at AlN/GaN interfaces.Therefore,a moderate larger in-plane lattice constant and thicker AlN layer could improve the concentration and confinement of 2 DHG at AlN/GaN interfaces.Our study could serve as a guide to control the properties of 2 DHG at Ⅲ-nitride interfaces and help to optimize the performance of p-type nitride-based devices.  相似文献   

6.
By making use of the quasi-two-dimensional(quasi-2D) model, the current–voltage(I–V) characteristics of In0.18Al0.82N/AlN/GaN heterostructure field-effect transistors(HFETs) with different gate lengths are simulated based on the measured capacitance–voltage(C–V) characteristics and I–V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas(2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V·s for the prepared In0.18Al0.82N/AlN/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain–source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density,the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.  相似文献   

7.
AlGaN/GaN heterostructures have been irradiated by neutrons with different fluences and characterized by means of temperature-dependent Hall measurements and Micro-Raman scattering techniques. It is found that the carrier mobility of two-dimensional electron gas (2DEG) is very sensitive to neutrons. At a low fluence of 6.13 × 10^15 cm^-2, the carrier mobility drops sharply, while the sheet carrier density remains the same as that of an unirradiated sample. Moreover, even for a fluence of up to 3.66 × 10^16 cm^-2, the sheet carrier density shows only a slight drop. We attribute the degradation of the figure-of-merit (product of ns×μ ) of 2DEG to the defects induced by neutron irradiation. Raman measurements show that neutron irradiation does not yield obvious change to the strain state of AlGaN/GaN heterostructures, which proves that degradation of sheet carrier density has no relation to strain relaxation in the present study. The increase of the product of ns × μ of 2DEG during rapid thermal annealing processes at relatively high temperature has been attributed to the activation of GeGa transmuted from Ga and the recovery of displaced defects.  相似文献   

8.
By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.  相似文献   

9.
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AIGaN HBL with gradual AI composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conven tional p-A1GaN EBL or a common n-A1GaN HBL. Meanwhile, the efficiency droop is alleviated when an n-A1GaN HBL with gradual A1 composition is used.  相似文献   

10.
AlGaN/AlN/GaN structures are grown by metalorganic vapor phase epitaxy on sapphire substrates. Influences of AlN interlayer thickness, AlGaN barrier thickness, and Al composition on the two-dimensional electron gas(2DEG) performance are investigated. Lowering the V/III ratio and enhancing the reactor pressure at the initial stage of the hightemperature GaN layer growth will prolong the GaN nuclei coalescence process and effectively improve the crystalline quality and the interface morphology, diminishing the interface roughness scattering and improving 2DEG mobility. AlGaN/AlN/GaN structure with 2DEG sheet density of 1.19 × 1013cm-2, electron mobility of 2101 cm2·V-1·s-1, and square resistance of 249 ? is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号