首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 165 毫秒
1.
文中基于氢在椰壳活性炭YK-1上的平衡吸附数据,以探寻氢在碳基材料上适宜存储条件为目的,研究吸附氢分子间相互作用能随储存系统温度、压力、表面遮盖率的变化规律。首先,依据容积法的原理,在温度区间113K—293K、压力范围0—13MPa测试氢在YK-1椰壳活性炭上的吸附等温线。其次,应用格子理论推导通用吸附等温方程,通过等温方程的线性标绘确定氢分子在吸附表面的最大浓度,并由氢分子在活性炭典型吸附空间内受到的壁面作用势函数迭代求解氢分子受到的壁面作用势,进而获得与各吸附平衡态对应的氢分子间相互作用能。最后,根据氢分子间作用能随温度、表面遮盖率等的变化关系,分析氢分子在此活性炭上吸附的特点。  相似文献   

2.
为了利用吸附等温线理论模型模拟高真空多层绝热LNG槽车内吸气剂的吸附过程,对在真空技术中常用的等温式进行了分析研究。通过实验获得吸气剂在室温下的吸氢等温线,同时利用实验数据得到考虑分子间作用力的BET模型中的参数值。将模型结果与实验数据进行对比分析,结果表明:考虑分子间作用力的BET模型不能用作高真空多层绝热LNG槽车真空夹层内吸气剂吸附量的计算。利用Temkin和Freundlich等温式分段对实验数据进行拟合,对于1#吸气剂,拟合方程式计算得出的吸附量与实验数据的相对误差仅为2.6%,表明拟合方程能够对吸气剂在室温下的吸氢量进行准确预测。  相似文献   

3.
综述金属原子与非金属原子和分子在石墨烯、BC3平面等二维硼碳基纳米结构上的吸附所表现出的各种物理性质及可能的应用.纯净的石墨烯为零带隙的半金属、无磁且自旋轨道耦合效应非常弱,BC3平面为间接带隙半导体,但金属原子与非金属原子和分子的吸附可能使石墨烯体系在Dirac点处打开带隙、具有强自旋轨道耦合效应,可能使石墨烯体系与二维BC3体系具有磁有序、超导电性及应用在氢存储上.另外石墨烯表现出非常好的分子探测性能.  相似文献   

4.
卢金炼  曹觉先 《物理学报》2012,61(14):148801-148801
采用基于密度泛函理论的第一性原理方法研究了单个过渡金属钛原子吸附氢分子的物理机制. 研究表明,单个钛原子最多能吸附8对氢分子,吸附结构为对称的两个类金字塔型结构, 其平均吸附能为- 0.28 eV.通过计算轨道能级和差分电荷密度分布,分析决定吸附结构、 吸附能大小以及吸附氢分子数目的内在物理机制.研究表明,钛原子的4s电子转移到3d轨道上, 从而产生较强的极化电场,导致氢分子极化,钛原子通过静电极化作用吸附氢分子. 本文的研究将对设计高密度储氢材料有一定的指导作用.  相似文献   

5.
为提高由NLDFT计算值确定活性炭孔径分布(PSD)的精度,根据测得的77K氮在非石墨化碳黑BP460和椰壳活性炭K05上的吸附数据,比较了吸附空间及壁面结构采取不同假设对计算结果的影响。结果表明,常规将活性炭吸附空间近似为无限尺寸的石墨化碳黑表面构成的狭缝孔,并由Lorenz-Berthelot混合法则确定相互作用参数,计算值在较低压力区域和试验值之间的偏差明显;而将吸附壁面结构近似为非石墨化碳黑,并由表面粗糙度和石墨晶格分布的误差函数修正相互作用参数后,计算结果和试验值吻合良好。分析结果时发现,归一化方法和考虑周边吸附质分子作用的加权函数是影响NLDFT计算结果准确性的关键因素。  相似文献   

6.
氢在碳纳米纤维中的低温吸附储存特性   总被引:1,自引:0,他引:1  
张超  鲁雪生  顾安忠 《低温与超导》2006,34(4):276-278,285
利用容积法测量了77K下氢在一种碳纳米纤维上的吸附等温线。采用分子模拟的方法模拟了77K下氢分子在平板状碳纳米纤维中的吸附,碳纳米纤维的石墨层层间距分别为0.335nm、0.6nm、0.9nm以及1.5nm。模拟结果表明:石墨层层间距为0.335nm的碳纳米纤维在77K下吸附储氢密度很难达到DOE的能量密度标准;当板间距为0.9nm时,系统吸附储氢的重量密度和体积密度均能达到最大,且在77K、1MPa下,能达到DOE的能量密度标准。  相似文献   

7.
应用EAM模型研究了氢在Ni(511)面的吸附和解离.首先计算了单个氢原子在Ni(511)面上的吸附能、吸附键长及吸附高度,发现氢在Ni(511)面上有三种相对稳定的吸附位,即台阶棱上的二重桥位B、台阶面上的三重洞位H3′以及平台面上的四重洞位H1和H2.与Ni(001)低指数面相比,明显的增加了台阶棱上的二重桥位B以及台阶面上的三重洞位H3′,并且H1位的吸附性也有所增强,说明台阶的存在影响了氢在Ni(511)表面的吸附性,使台阶附近的吸附位增多且吸附性增强;然后计算了氢分子在台阶表面上解离吸附时的活化势垒、吸附能、氢镍之间键长及氢氢之间的距离,计算结果表明台阶底部更易于使氢分子解离,台阶附近是氢吸附和解离的活性部位.  相似文献   

8.
本文采用基于密度泛函理论(DFT)的第一原理赝势平面波(PW-PP)方法,对氢分子在Mg2Ni(010)面的吸附与分解进行了研究,发现氢分子以Horl的方式吸附在表面层Ni原子的顶位时吸附能最高,为0.6769 eV,这表明氢分子最可能以Horl的方式吸附在表面层Ni原子的顶位,此时氢分子跟表面的距离(rd)和氢分子的键长(rH)分别为1.6286 A和0.9174 (A).在分子吸附的基础上计算了氢分子沿着选取的反应路径分解时的反应势垒,发现要使氢分子分解需要0.2778 eV的活化能,而氢分子分解时的吸附能为0.8390 eV,分解后两个氢原子的距离为3.1712(A).在分子吸附和分解吸附时氢原子跟正下方的Ni原子都有较强的相互作用,氢原子所得到的电子主要来自氢分子正下方的Ni原子.  相似文献   

9.
采用密度泛函理论(DFT)方法研究平面星形Li_6Si_6团簇的结构及其储氢性能.结果表明,氢分子能在平面星形Li_6Si_6团簇表面发生吸附,每个Li原子周围均可有效吸附三个氢分子,结构的稳定性及合适的吸氢条件表明平面星形Li_6Si_6团簇在常温常压条件下可以作为储氢媒介.  相似文献   

10.
本文采用基于密度泛函理论(DFT)的第一原理赝势平面波(PW-PP)方法,对氢分子在Mg2Ni(010)面的吸附与分解进行了研究,我们发现氢分子以Hor1的方式吸附在表面层Ni原子的顶位时吸附能最高,为0.6769eV,这表明氢分子最可能以Hor1的方式吸附在表面层Ni原子的顶位,此时氢分子跟表面的距离( )和氢分子的键长( )分别为1.6286Å和0.9174Å. 在分子吸附的基础上计算了氢分子沿着选取的反应路径分解时的反应势垒,发现要使氢分子分解需要0.2778eV的活化能,而氢分子分解时的吸附能为0.8390eV,分解后两个氢原子的距离为3.1712Å. 在分子吸附和分解吸附时氢原子跟正下方的Ni原子都有较强的相互作用,氢原子所得到的电子主要来自氢分子正下方的Ni原子.  相似文献   

11.
The specific features of hydrogen adsorption (and adsorption of other gases) at supercritical temperatures (specifically, the absence of capillary condensation and polymolecular adsorption and the appearance of a maximum in the adsorption isotherm in the pressure range 1–10 MPa) are discussed. Hydrogen adsorption decreases by an order of magnitude as the temperature increases from the critical temperature to the room value. The experimental adsorption isotherms in the supercritical range found in the literature are used to deduce a criterion of limiting hydrogen adsorption at various temperatures. Carbon adsorbents of different types (individual single-wall nanotubes, bundles of such nanotubes, multiwall nanotubes, and carbon fibers) are considered. A model of single graphite plane shows that the limiting hydrogen adsorption is 5 wt % at 77 K and 1 wt % at 293 K. These values can only be approached by adsorption in a material made of individual single-wall nanotubes. Methods to increase the adsorption are proposed.  相似文献   

12.
The hydrogen adsorption in slit-shaped pores of carbon adsorbents is investigated using the density functional theory. Hydrogen adsorption in the gap between two monocarbon (graphene) walls is calculated for 20.33, 77, and 200 K. At T = 20.38 and 77 K, our data on the hydrogen storage capacities in slit pores are in good agreement with the results of A.A. Fomkin and V.A. Sinitsyn [23], obtained using Dubinin’s volume pore filling theory and the standard data on benzene adsorption. Under supercritical conditions, the adsorption capacity in the modeling adsorbents is underestimated by half.  相似文献   

13.
The adsorption and catalytic characteristics of heterogeneous palladium based catalyst and its modified catalysts with gases (air and hydrogen) and acidic aqueous solution (HCl) were studied for evaluating the influence of pretreatment methods for toluene. The structural and energetic adsorption properties of the parent and pretreated catalysts were analyzed by means of nitrogen adsorption isotherms and gravimetric methods. The light-off curve and the XPS investigation were used for analyzing the catalytic activity and the surface state of palladium. It was clearly shown from the experimental results that hydrogen pretreated catalysts having metallic surface state exhibited the highest adsorption capacity and catalytic activity compared to that of parent and modified catalysts. The adsorption equilibrium data for toluene were obtained at three different temperatures and correlated successfully with the two-site Langmuir molecular isotherm model (L2m). It was also found that the palladium phase has more adsorption affinity for toluene molecules than the alumina support. The isosteric heat of adsorption calculated by using the Clausius-Clapeyron equation significantly changed with the coverage and the lateral interactions between the adsorbate-adsorbate molecules control the system. Furthermore, comparative analysis of the adsorption energy distribution revealed that the parent and its modified catalysts have different types of surface energetic heterogeneities.  相似文献   

14.
Activated carbon (AC), multiwalled carbon nanotube (MWCNT), and cadmium hydroxide nanowire loaded on activated carbon (Cd(OH)2-NW-AC) have been used for the removal of safranine O (SO) from wastewater. The effects of various parameters including pH, temperature, concentration of the dye, amount of adsorbents, and contact time on the SO adsorption efficiency for all adsorbents has been investigated. Graphical correlation of fitting experimental data to various adsorption isotherm models like those of Langmuir, Freundlich, Tempkin, and Dubinin–Radushkevich for all adsorbents have been calculated. It was found that safranine O adsorption on all adsorbents was endothermic and feasible in nature. Fitting the experimental data to different kinetic models suggests that the adsorption process follows pseudo-second-order kinetics with involvement of the particle diffusion mechanism.  相似文献   

15.
Changes in the capacitance of a platinum electrode due to adsorption of the tripeptide Bz-Phe-Val-Arg-pNA have been measured and analyzed. The experimental isotherm can be described with a Langmuir isotherm if changes in molecular conformation are taken into account. The desorption and adsorption kinetics both exhibit two time constants which are proposed to reflect that the molecules are adsorbed in at least two different conformations. Measurements of the initial rate of adsorption are consistent with the isotherm and the desorption kinetics. The difference between the electrically determined isotherm and one determined by ellipsometry is also explained by a change in conformation of the molecules on the surface.  相似文献   

16.
A refined kinetic equation is proposed for the adsorption of molecules on a solid surface, taking account of factors such as the interaction of the molecules and their migration over the surface. Detailed theoretical analysis of the process is complemented by experimental verification of the resulting formulas by pulsed photodesorption. The time of monolayer formation is found to be two orders of magnitude greater than the values calculated from the Langmuir isotherm. This indicates that the new formula for the adsorption isotherm satisfactorily describes the process in high vacuum. Kazan’ State Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 41–48, April, 1998.  相似文献   

17.
A survey is presented of the storage capacities of a large number of different adsorbents for hydrogen at 77 K and 1 bar. Results are evaluated to examine the feasibility and perspectives of transportable and reversible storage systems based on physisorption of hydrogen on adsorbents. It is concluded that microporousadsorbents, e.g. zeolites and activated carbons, display appreciable sorption capacities. Based on their micropore volume (∼1 ml/g) carbon-based sorbents display the largest adsorption, viz. 238 ml (STP)/g, at the prevailing conditions. Optimization of sorbent and adsorption conditions is expected to lead to adsorption of ∼560 ml (STP)/g, close to targets set for mobile applications. Received: 9 January 2001 / Accepted: 27 January 2001 / Published online: 23 March 2001  相似文献   

18.
In the present paper three natural minerals used in many industrial and environmental applications namely zeolite clinoptilolite and the clays bentonite and vermiculite are studied by utilising ion exchange and adsorption. In particular, the Dubinin-Astakhov adsorption isotherm is used modified by introducing a solubility-normalized adsorption potential for studying the ion exchange process. The equation, is applied in experimental isotherms in order to determine adsorption energy and heterogeneity parameter for the ion exchange of Pb2+ in the natural minerals. The results indicate that the modified Dubinin-Astakhov adsorption isotherm represents the experimental data well and at the same time provides the heterogeneity parameter of the materials, which is an important adsorbent physical parameter as well as the adsorption energy. In order to deepen the study and link the results to the pore structure BET analysis is presented as well.  相似文献   

19.
The uniform large micropores of hydrothermally stable Y zeolites are used widely to confine both polar and non-polar molecules. This paper compares the physisorption of water, methanol, cyclohexane, benzene and other adsorbates over various Y zeolites. These adsorbents are commercial products with reproducibly controllable physical and chemical characteristics. Results indicate that the type I isotherms typical for micropore adsorption can turn into type II or type III isotherms depending on either or both the hydrophobicity of the adsorbent and the polarity of the adsorbate. Methanol produced a rare type V isotherm not reported over zeolites before. Canonical and grand canonical Monte Carlo molecular simulations with Metropolis importance sampling reproduced the experimental isotherms and showed characteristic geometric patterns for molecules confined in Na-X, Na-Y, dealuminated Y, and ZSM5 structures. Adsorbate—adsorbate interactions seem to determine the micropore condensation of both polar and non-polar molecules. Exchanged ions and lattice defects play a secondary role in shaping the adsorption isotherms. The force field of hydrophobic Y appears to exert an as yet unexplored sieving effect on adsorbates having different dipole moments and partial charge distributions. This mechanism is apparently different from both the monolayer formation controlled adsorption on hydrophobic mesopores and macropores and the polarizability and small-pore opening controlled micropore confinement in hydrophobic ZSM5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号