首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
I first discuss Albert Einstein’s practical and educational background in engineering and then his invention of his “little machine,” an electrostatic induction machine, while working in the Patent Office in Bern, Switzerland, between 1902 and 1909. He believed that it could be used as a voltage or potential multiplier in experiments to test his new theory of Brownian motion of 1905. I then discuss Einstein’s search for collaborators to produce it and the work that his friends Conrad and Paul Habicht, in particular, did in designing and testing it. Although the initial response to it was promising, it never became a success after Paul Habicht manufactured a few specimens of it beginning in 1912.Today only three specimens are known to exist; these are preserved at the Zürcher Hochschule Winterthur, Switzerland, in the Physics Institute of the University of Tübingen, Germany, and in the Museum Boerhaave in Leiden,The Netherlands.  相似文献   

2.
We analyze the forgotten communication of Ettore Majorana (1906–1938?) on the Thomas-Fermi statistical model of the atom, which he presented on December 29, 1928, during the XXII General Meeting of the Italian Physical Society in Rome, and which was published in Il Nuovo Cimento, the Society’s journal, in 1929. His communication was not mentioned subsequently in any of the numerous publications of Enrico Fermi (1901–1954) and his group in Rome, nor in any of the later accounts of Majorana’s life and work. We place Majorana’s contribution within the context of contemporary research on the subject, point out its influence on the final formulation of the Thomas-Fermi statistical model by Fermi and Edoardo Amaldi (1908–1989) in 1934, and discuss Majorana’s other scientific contributions before his mysterious disappearance in 1938. Francesco Guerra is Professor of Theoretical Physics in the Department of Physics at the University of Rome “La Sapienza.” His main fields of research are quantum-field theory, statistical mechanics of complex systems, and the history of nuclear physics. Nadia Robotti is Professor of History of Physics in the Department of Physics at the University of Genoa. Her main fields of research are the history of atomic physics, quantum mechanics, and nuclear physics.  相似文献   

3.
Paul Ehrenfest (1880–1933) received his Ph.D. degree at the University of Vienna in 1904 and moved with his wife and young daughter to St. Petersburg in 1907, where he remained until he succeeded Hendrik Antoon Lorentz (1853–1928) in the chair of theoretical physics at the University of Leiden in 1912. Drawing upon Ehrenfest’s correspondence of the period, we first examine Ehrenfest’s difficult and insecure years in St. Petersburg and then discuss his unsuccessful attempts to obtain a position elsewhere before he was appointed as Lorentz’s successor in Leiden. Pim Huijnen is writing a doctoral dissertation in history; the present paper is based upon his Master’s Thesis, “‘Die Grenze des Pathologischen’: Het leven van fysicus Paul Ehrenfest, 1904–1912,” University of Groningen, 2003. A.J.Kox is Pieter Zeeman Professor of History of Physics at the University of Amsterdam.  相似文献   

4.
I discuss the family background and early life of the German theoretical physicist Fritz Reiche (1883–1969) in Berlin; his higher education at the University of Berlin under Max Planck (1858–1947); his subsequent work at the University of Breslau with Otto Lummer (1860–1925); his return to Berlin in 1911, where he completed his Habilitation thesis in 1913, married Bertha Ochs the following year, became a friend of Albert Einstein (1879–1955), and worked during and immediately after the Great War. In 1921 he was appointed as ordentlicher Professor of Theoretical Physics at the University of Breslau and worked there until he was dismissed in 1933. He spent the academic year 1934–1935 as a visiting professor at the German University in Prague and then returned to Berlin, where he remained until, with the crucial help of his friend Rudolf Ladenburg (1882–1952) and vital assistance of the Emergency Committee in Aid of Displaced Foreign Scholars, he, his wife Bertha, and their daughter Eve were able to emigrate to the United States in 1941 (their son Hans had already emigrated to England in 1939).From 1941–1946 he held appointments at the New School for Social Research in New York, the City College of New York, and Union College in Schenectady, New York, and then was appointed as an Adjunct Professor of Physics at New York University, where his contract was renewed year-by-year until his retirement in 1958.  相似文献   

5.
In Memoriam     
I sketch the rich life and multifaceted work of Philip Morrison (1915–2005), from his early life in Pittsburgh, Pennsylvania, and higher education at the Carnegie Institute of Technology and the University of California at Berkeley, to his contributions to the Manhattan Project, his research at Cornell University and the Massachusetts Institute of Technology after the war, his subsequent political activity on behalf of nuclear disarmament, his role in the search for extraterrestrial intelligence, and his enormous influence as an educator, public speaker, and writer. A.P. French is Professor of Physics, Emeritus, at the Massachusetts Institute of Technology.  相似文献   

6.
I examine the changing attitudes of Oskar Klein (1894–1977) and Albert Einstein (1879–1955) toward the notion of extending general relativity by an extra dimension with the aim of encompassing electromagnetism and gravitation in a unified field theory. I show how Klein developed his model of five-dimensional unification with the goal of explaining the discreteness of atomic energy levels, and how Einstein later embraced that goal. By examining the correspondence between Klein and Einstein, some of which was relayed through Paul Ehrenfest (1880–1933), I speculate that Klein’s work helped motivate Einstein to explore deterministic five-dimensional theories as a potential alternative to probabilistic quantum mechanics. Finally, I consider the contributions of Wolfgang Pauli (1900–1958) to the subject and elucidate his role in convincing Klein and Einstein that their models were not viable. Paul Halpern is Professor of Physics at the University of the Sciences in Philadelphia. He currently is a member of the Executive Committee of the Forum on the History of Physics of the American Physical Society.  相似文献   

7.
Robert F. Christy, Institute Professor of Theoretical Physics Emeritus at Caltech, recalls his wartime work at Los Alamos on the critical assembly for the plutonium bomb (“the Christy bomb”); the Alamogordo test, July 16, 1945; the postwar concerns of ALAS (Association of Los Alamos Scientists); his brief return to the University of Chicago and move to Caltech; friendship with and later alienation from Edward Teller; work with Charles and Tommy Lauritsen and William A. Fowler in Caltech’s Kellogg Radiation Laboratory; Freeman Dyson’s Orion Project; work on the meson and RR Lyrae stars; fellowship at Cambridge University; 1950s Vista Project at Caltech; his opposition to the Strategic Defense Initiative; and his post-retirement work for the National Research Council’s Committee on Dosimetry and on inertial-confinement fusion.  相似文献   

8.
I summarize the historical development of concepts of time in physics from antiquity to the end of the twentieth century. Editors’ Note: Max Jammer received the American Physical Society/American Institute of Physics Abraham Pais Prize for the History of Physics for 2007, “For his groundbreaking historical studies of fundamental concepts in physics, including his comprehensive account of the development of quantum mechanics.” We publish here his Pais Prize Lecture, which was presented at the APS meeting in Jacksonville, Florida, on April 16, 2007.  相似文献   

9.
In Memoriam     
In 1905 Lord Kelvin (1824–1907) was awarded the second John Fritz Medal for a lifetime of outstanding achievements in science and technology. I sketch Kelvin’s life, education, and work in thermodynamics, electrical technology, and instrumentation, and his role in the laying of the Atlantic cable. I then turn to Kelvin’s four visits to America, in 1876 on the centenary of the Declaration of Independence of the United States of America; in 1884 when he gave his famous Baltimore Lectures at The Johns Hopkins University; in 1897 when he visited Niagara Falls for the third time and advised George Westinghouse (1846–1914) on how to develop its enormous water power for the generation of electricity; and in 1902 when he advised George Eastman (1854–1932) on the development of the photographic industry. Written in connection with the Kelvin Centenary Year 2007; see “Celebrating the Life of Lord Kelvin,” University of Glasgow News Review No. 11 (2007), 4. Matthew Trainer: Matthew Trainer received his M.Phil. degree in physical sciences at the University of Edinburgh in 1980 and currently is a laboratory instructor at the University of Glasgow where his research focuses in part on the life and work of Lord Kelvin.  相似文献   

10.
11.
12.
In Appreciation     
Leslie Foldy’s diminutive stature and modest demeanor gave little clue to the powerful intellect responsible for several significant advances in theoretical physics.Two were particularly important. His 1945 theory of the multiple scattering of waves laid out the fundamentals that most modern theories have followed (and sometimes rediscovered), while his work with Siegfried Wouthuysen on the nonrelativistic limit of the Dirac equation opened the way to a wealth of valuable insights. In this article we recall some of the milestones along Foldy’s path through a life in physics. Some of the anecdotes we report here were related to one of the authors (PLT) just before an event in 2000 celebrating Foldy’s 80th birthday, while others were told to us over the course of the nearly forty years during which we were colleagues. Still others were uncovered during the course of WJF’s research for his book, Physics at a Research University: Case Western Reserve 1830–1990 (Cleveland: Case Western Reserve University, 2006). Other details were provided by Foldy’s widow, Roma. Philip L. Taylor is the Perkins Professor of Physics and Professor of Macromolecular Science and Engineering at Case Western Reserve University. William J. Fickinger is Professor Emeritus of Physics at Case Western Reserve University.  相似文献   

13.
The theoretical physicist Philipp Frank (1884–1966) and the applied mathematician Richard von Mises (1883–1953) both received their university education in Vienna shortly after 1900 and became friends at the latest during the Great War.They were attached to the Vienna Circle of Logical Positivists and wrote an influential two-part work on the differential and integral equations of mechanics and physics, the Frank-Mises, of 1925 and 1927, with its second edition following in 1930 and 1935.This work originated in the lectures that the mathematician Bernhard Riemann (1826–1866) delivered on partial differential equations and their applications to physical questions at the University of G?ttingen between 1854 and 1862, which were edited and published posthumously in1869 by the physicist Karl Hattendorff (1834–1882).The immediate precursor of the Frank-Mises, however, was the extensive revision of Hattendorff’s edition of Riemann’s lectures that the mathematician Heinrich Weber (1842–1913) published in two volumes, the Riemann-Weber, of 1900 and 1901, with its second edition following in 1910 and 1912. I trace this historical lineage, explore the nature and contents of the Frank-Mises, and discuss its complementary relationship to the first volume of the text that the mathematicians Richard Courant (1888–1972) and David Hilbert (1862–1943) published on the methods of mathematical physics in 1924, the Courant-Hilbert,which, when it and its second volume of 1937 were translated into English and extensively revised in 1953 and 1961, eclipsed the classic Frank-Mises.  相似文献   

14.
As President of the Kaiser Wilhelm Society and its successor, the Max Planck Society, from 1946 until 1960, Otto Hahn (1879–1968) sought to portray science under the Third Reich as a purely intellectual endeavor untainted by National Socialism. I outline Hahn’s activities from 1933 into the postwar years, focusing on the contrast between his personal stance during the National Socialist period, when he distinguished himself as an upright non-Nazi, and his postwar attitude, which was characterized by suppression and denial of Germany’s recent past. Particular examples include Hahn’s efforts to help Jewish friends; his testimony for colleagues involved in denazification and on trial in Nuremberg; his postwar relationships with émigré colleagues, including Lise Meitner; and his misrepresentation of his wartime work in the Kaiser Wilhelm Institute for Chemistry.  相似文献   

15.
I sketch the lives and work of the Norwegian physicist Kristian Birkeland (1867–1917) and the English mathematician Sydney Chapman (1888–1970), focusing particularly on Chapman’s controversy with Birkeland over the origin and development of auroras, a controversy that Chapman conducted with Birkeland for more than fifty years after Birkeland’s death. Sidney Borowitz is Professor Emeritus of Physics at New York University.  相似文献   

16.
Julian Schwinger’s influence on twentieth-century science is profound and pervasive. He is most famous for his renormalization theory of quantum electrodynamics, for which he shared the Nobel Prize in Physics for 1965 with Richard Feynman and Sin-itiro Tomonaga. This triumph undoubtedly was his most heroic work, but his legacy lives on chiefly through subtle and elegant work in classical electrodynamics, quantum variational principles, proper-time methods, quantum anomalies, dynamical mass generation, partial symmetry, and much more. Starting as just a boy, he rapidly became one of the preeminent nuclear physicists in the world in the late 1930s, led the theoretical development of radar technology at the Massachusetts Institute of Technology during World War II, and soon after the war conquered quantum electrodynamics, becoming the leading quantum-field theorist for two decades, before taking a more iconoclastic route during the last quarter century of his life.  相似文献   

17.
Quirino Majorana (1871–1957) was an outstanding Italian experimental physicist who investigated a wide range of phenomena during his long career in Rome,Turin, and Bologna. We focus on his experiments in Turin during 1916–1921 and in Bologna during 1921–1934 to test the validity of Albert Einstein’s postulate on the constancy of the speed of light and to detect gravitational absorption. These experiments required extraordinary skill, patience, and dedication, and all of them confirmed Einstein’s postulate and Isaac Newton’s law of universal gravitation to high precision. Had they not done so, Majorana’s fame among historians and physicists no doubt would be much greater than it is today. Giorgio Dragoni is Professor of History of Physics at the University of Bologna. Giulio Maltese is a Roman member of the Italian Society for the History of Physics and Astronomy. Luisa Atti is a Bolognese member of the Association for the Teaching of Physics.  相似文献   

18.
I draw on my interviews in 2005–2007 with Gerson Goldhaber (1924–2010), his wife Judith, and his colleagues at Lawrence Berkeley National Laboratory. I discuss his childhood, early education, marriage to his first wife Sulamith (1923–1965), and his further education at the Hebrew University in Jerusalem (1942–1947) and his doctoral research at University of Wisconsin at Madison (1947–1950). He then was appointed to an instructorship in physics at Columbia University (1950–1953) before accepting a position in the physics department at the University of California at Berkeley and the Radiation Laboratory (later the Lawrence Berkeley Laboratory, today the Lawrence Berkeley National Laboratory), where he remained for the rest of his life. He made fundamental contributions to physics, including to the discovery of the antiproton in 1955, the GGLP effect in 1960, the psi particle in 1974, and charmed mesons in 1977, and to cosmology, including the discovery of the accelerating universe and dark energy in 1998. Beginning in the late 1960s, he also took up art, and he and his second wife Judith, whom he married in 1969, later collaborated in illustrating and writing two popular books. Goldhaber died in Berkeley, California, on July 19, 2010, at the age of 86.  相似文献   

19.
Horace Richard Crane (1907–2007) was born and educated in California. His childhood was full of activities that helped him become an outstanding experimental physicist. As a graduate student at the California Institute of Technology (1930–1934), he had the good fortune to work with Charles C. Lauritsen (1892–1968) just as he introduced accelerator-based nuclear physics to Caltech. They shared the euphoric excitement of opening up a new field with simple, ingenious apparatus and experiments. This work prepared Crane for his career at the University of Michigan (1935–1973) where in the 1950s, after making the first measurement of the electron’s magnetic moment, he devised the g−2 technique and made the first measurement of the anomaly in the electron’s magnetic moment. A man of direct, almost laconic style, he made lasting contributions to the exposition of physics to the general public and to its teaching in high schools, community colleges, four-year colleges, and universities. I tell how he became a physicist and describe some of his early achievements.  相似文献   

20.
I explore the early life and contributions of Peter Bergmann (1915–2002), focusing on his family background, education, and ideas. I examine how Bergmann’s formative years were shaped by the outspoken influence of his mother, a leading educational reformer; the distinguished reputation of his father, a renowned materials chemist; and his cherished hope of working with Albert Einstein (1879–1955), to whom he eventually became an assistant. Inspired by these and other notable thinkers, Bergmann became an exemplary organizer, educator, and mentor in the fields of general relativity and quantum gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号