首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work the interaction of the antimicrobial peptide indolicidin (IND) and its mutants CP10A and CP11 with a eukaryotic membrane model was examined by molecular dynamics simulations. The aim was to analyse the behaviour of these antimicrobial peptides when they interact with a eukaryotic modelled membrane, thereby obtaining atomic detailed observations that are not experimentally available. In the simulations, the widely studied dipalmitoylphosphatidylcholine hydrated bilayer was used as a eukaryotic membrane model. In agreement with experimental observations, the peptides IND, CP10A, and CP11 insert into the bilayer differently; the peptides that insert more deeply present the major hemolytic activities. The hydrophobic residues are responsible for the insertion, but some Trp residues of the peptides remain at the bilayer/water interface because they interact with the bilayer choline groups by cation-π interactions that should be important for recognition of eukaryotic membrane by the three studied peptides.  相似文献   

2.
Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained β-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer brushes, or the most effective molecular release kinetics for drug delivery applications, for example.  相似文献   

3.
Summary To isolate peptide ligands that bound calmodulin (CaM) specifically, we screened an M13 phage library displaying cyclized octamer random peptides with immobilized bovine CaM. Isolates were recovered, sequenced, and deduced to express nine independent peptides, five of which contained the sequence Trp-Gly-Lys (WGK). Four of the nine peptide sequences were synthesized in cyclized, biotinylated form. All of the peptides required Ca2+ to bind CaM. The cyclized, disulfide-bonded form of one such peptide, SCLRWGKWSNCGS, bound CaM better than its reduced form or an analogue in which the cysteine residues were replaced by serine. The cyclized peptide also exhibited the ability to inhibit CaM-dependent kinase activity. Systematic alanine substitution of residues in this peptide sequence implicate the tryptophan residue as being critical for binding, with other residues contributing to binding to varying degrees. Cloning of ligand targets (COLT) confirmed the specificity of one of the cyclized peptides, yielding full-length and C-terminal CaM clones, in addition to a full-length clone of troponin C, a CaM-related protein. This study has demonstrated that conformationally constrained peptides isolated from a phage library acted as specific, Ca2+-dependent CaM ligands.  相似文献   

4.
Through virtual screening, electronic tongue verification, and molecular docking technology, the structure-taste activity relationship of 47 kinds of umami peptides (octapeptide - undecapeptide) from Stropharia rugosoannulata prepared by simultaneous ultrasonic-assisted directional enzymatic hydrolysis was analyzed. The umami peptides of S.rugosoannulata can form hydrogen bond interaction and electrostatic interaction with umami receptors T1R1/T1R3. The amino acid residues at the peptides' N-terminal and C-terminal play a vital role in binding with the receptors to form a stable complex. D, E, and R are the primary amino acids in the peptides that easily bind to T1R1/T1R3. The basic amino acid in the peptides is more easily bound to T1R1, and the acidic amino acid is more easily bound to T1R3. The active amino acid sites of the receptors to which the peptides bind account for 42%−65% of the total active amino acid residues in the receptors. ASP147 and ASP219 are the critical amino acid residues for T1R1 to recognize the umami peptides, and ARG64, GLU45, and GLU48 are the critical amino acid residues for T1R3 to recognize the umami peptides. The increase in the variety and quantity of umami peptides is the main reason for improving the umami taste of the substrate prepared by synchronous ultrasound-assisted directional enzymatic hydrolysis. This study provides a theoretical basis for understanding simultaneous ultrasound-assisted directional enzymatic hydrolysis for preparing umami peptides from S.rugosoannulata, enhancing the flavor of umami, and the relationship between peptide structure and taste activity.  相似文献   

5.
利用高温分子动力学模拟和红外光谱实验手段,研究了一个基于分子力学力场的酰胺-I带振动频率图的温度依赖性. 结果表明,基于298 K所建立的频率图可以应用上至500 K的分子动力学轨迹,所模拟的红外光谱能够很好地重复88 oC时的实验光谱. 另外还模拟了两个含有天然和非天然氨基酸残基的三肽分子的红外光谱,与实验结果相比得到了较好的符合. 结果表明,所建立的频率图能够用于获得多肽体系在不同温度下的酰胺-I带局域模振动频率及其分布,有助于深入认识多肽的热去折叠物种的红外光谱特征.  相似文献   

6.
There is a considerable current interest in understanding the function of antimicrobial peptides for the development of potent novel antibiotic compounds with a very high selectivity. Since their interaction with the cell membrane is the major driving force for their function, solid-state NMR spectroscopy is the unique method of choice to study these insoluble, non-crystalline, membrane-peptide complexes. Here I discuss solid-state NMR studies of antimicrobial peptides that have reported high-resolution structure, dynamics, orientation, and oligomeric states of antimicrobial peptides in a membrane environment, and also address important questions about the mechanism of action at atomic-level resolution. Increasing number of solid-state NMR applications to antimicrobial peptides are expected in the near future, as these compounds are promising candidates to overcome ever-increasing antibiotic resistance problem and are well suited for the development and applications of solid-state NMR techniques.  相似文献   

7.
邓礼  赵玉荣  周鹏  徐海  王延颋 《中国物理 B》2017,26(12):128701-128701
Nanostructures self-assembled by cross-β peptides with ordered structures and advantageous mechanical properties have many potential applications in biomaterials and nanotechnologies. Quantifying the intra-and inter-molecular driving forces for peptide self-assembly at the atomistic level is essential for understanding the formation mechanism and nanomechanics of various morphologies of self-assembled peptides. We investigate the thermodynamics of the intra-and inter-sheet structure formations in the self-assembly process of cross-β peptide KIIIIK by means of steered molecular dynamics simulation combined with umbrella sampling. It is found that the mechanical properties of the intra-and inter-sheet structures are highly anisotropic with their intermolecular bond stiffness at the temperature of 300 K being 5.58 N/m and0.32 N/m, respectively. This mechanical anisotropy comes from the fact that the intra-sheet structure is stabilized by enthalpy but the inter-sheet structure is stabilized by entropy. Moreover, the formation process of KIIIIK intra-sheet structure is cooperatively driven by the van der Waals(VDW) interaction between the hydrophobic side chains and the electrostatic interaction between the hydrophilic backbones, but that of the inter-sheet structure is primarily driven by the VDW interaction between the hydrophobic side chains. Although only peptide KIIIIK is studied, the qualitative conclusions on the formation mechanism should also apply to other cross-β peptides.  相似文献   

8.
The performance of new cellulose membranes, aminofunctionalized via a PEG spacer, as a solid support in the synthesis of peptide arrays is described. The new membranes are stable to trifluoroacetic acid (TFA) and strong aqueous base for days. These properties extend the scope of synthesis considerably, e.g., more efficient side chain cleavage protocols can be applied which yielded peptides of improved purity. For the first time, cellulose membranes with a loading as high as 5 micromol/cm2 were accessible. Additionally, newly developed polypropylene membranes with hydroxy- or amino functionalities were successfully employed for the SPOT synthesis of peptides and phosphopeptides. The membranes are compatible with antibody binding as well as enzymatic phosphorylation assays.  相似文献   

9.
S VENUGOPAL RAO 《Pramana》2014,83(2):241-253
The interaction of ultrashort laser pulses with molecules and solids is an extremely complex area of science research encompassing the fields of physics, chemistry, and materials science. The physics of interaction has been fairly understood over the last couple of decades and, consequently, several applications have been envisaged from these interactions in the fields of photonics, lithography, biomedicine, sensing, telecommunications etc. In the present article we describe three different components of interaction of ultrashort pulses with matter: (1) with liquid molecules/thin films wherein we present the results from our studies of optical nonlinearities predominantly using picosecond and femtosecond pulses, (2) with molecules/solids wherein plasma generated from the surface was studied for applications in understanding the molecular dynamics and towards identifying high-energy molecules and (3) within the bulk and on the surface of solids (e.g. glasses, bulk polymers and metals) resulting in micro- and nanostructures. Different applications resulting from such interactions in photonics and microfluidics are presented and discussed.  相似文献   

10.
Granzyme-mediated apoptosis, supported by pore-forming perforin, plays an important role in CD8+ T lymphocytes (CTL)-dependent cellular immunity protection against both cancer and viral infection. Quantitative and qualitative problems with CTL are potential contributing factors to disease progression. The feasibility of developing CTL-independent cellular immunity is desired but must first overcome the barrier of CTL-independent target cell recognition. Granzyme B with its strong pro-apoptotic activity in many different target cells is investigated for use in the CTL-independent cellular immunity approach, and granzyme B or its bioactive peptides without the enzymatic activity are more desirable for use. Native granzyme B with enzymatic activity is usually investigated in cancer cells for its mediation of apoptosis by detection of DNA fragmentation. Detection of cell death mediated by such peptides in cancer cells is needed to demonstrate the potential therapeutic purposes. We show with never-before-seen microscopic images using fluorescence microscopy that a synthetic granzyme B-like peptide fluorescent conjugate (GP1R) can: 1) mediate cell death of different cancer cells via membrane extrusion, 2) bind to constitutively expressed binding targets in different cancer cells and bacteria, and 3) promote bacterial phagocytosis. The putative binding targets may serve as a universal pathologic biomarker detectable by GP1R. Our data taken together demonstrate the potential applications of GP1R for use in CTL-independent target cell recognition and target cell death induction. It may lead to development of rapid targeted detection and new treatment of cancer, viral and bacterial infections. The new treatment may show mutual benefits for two or more diseases.  相似文献   

11.
We demonstrate the application of the proton inverse detected deuteron (PRIDE) NMR technique to the measurement of the orientation of membrane-bound peptides with enhanced sensitivity. Gramicidin D, a transmembrane peptide, and ovispirin, a surface-bound peptide, were used as model systems. The peptides were 2H-labeled by 1H/2H exchange and oriented uniaxially on glass plates. The directly detected 2H spectra of both peptides showed only a strong D(2)O signal and no large quadrupolar splittings. In contrast, the PRIDE spectrum of gramicidin exhibited quadrupolar splittings as large as 281 kHz, consistent with its transmembrane orientation. Moreover, the large D(2)O signal in the directly detected 2H spectra was cleanly suppressed in the PRIDE spectrum. For ovispirin, the 1H indirectly detected 2H spectrum revealed a 104 kHz splitting and a zero-frequency peak. The former reflects the in-plane orientation of most of the helix axis, while the latter results from residues with a magic-angle orientation of the N-D bonds. These are consistent with previous 15N NMR results on ovispirin. The combination of PRIDE and exchange labeling provides an economical and sensitive method of studying membrane peptide orientations in lipid bilayers without the influence of D(2)O and with the ability to detect N-D bonds at the magic angle from the bilayer normal.  相似文献   

12.
Surface‐enhanced Raman spectroscopy (SERS) has the potential to make a significant impact in biology research due to its ability to provide information orthogonal to that obtained by traditional techniques such as mass spectrometry (MS). While SERS has been well studied for its use in chemical applications, detailed investigations with biological molecules are less common. In addition, a clear understanding of how methodology and molecular characteristics impact the intensity, the number of peaks, and the signal‐to‐noise of SERS spectra is largely missing. By varying the concentration and order of addition of the SERS‐enhancer salt (LiCl) with colloidal silver, we were able to evaluate the impact of these variables on peptide spectra using a quantitative measure of spectra quality based on the number of peaks and peak intensity. The LiCl concentration and order of addition that produced the best SERS spectra were applied to a panel of synthetic peptides with a range of charges and isoelectric points (pIs) where the pI was directly correlated with higher spectral quality. Those peptides with moderate to high pIs and spectra quality scores were differentiated from each other using the improved method and a hierarchical clustering algorithm. In addition, the same method and algorithm was applied to a set of highly similar phosphorylated peptides, and it was possible to successfully classify the majority of peptides on the basis of species‐specific peak differences. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A practical high-throughput protein detection system is described, based on synthetic peptide arrays consisting of designed alpha-helical peptides, detected by fluorescence resonance energy transfer (FRET). Initially a model alpha-helical peptide known to interact with a structured protein, calmodulin, was selected to establish the strategy for high-throughput detection. In comparison to peptides with a single probe, a much higher FRET response has been observed with two fluorescent probes (7-diethylaminocoumarin-3-carboxylic acid and 5(6)-carboxy-fluorescein) at both termini of the synthetic peptides. To establish a reproducible high-throughput detection system, peptides were also immobilized onto a solid surface for detection of the target proteins. A small library of 112 different peptides was constructed, based on a model of the alpha-helical peptide with systematic replacement of residues carrying specific charges and/or hydrophobicities. The library was used to effectively characterize various proteins, giving their own 'protein fingerprint' patterns. The resulting 'protein fingerprints' correlate with the recognition properties of the proteins. The present microarray with designed synthetic peptides as the capturing agents is promising for the development of protein detection chips.  相似文献   

14.
This study aims to investigate effects of ultrasound assisted extraction on the abalone viscera protein extraction rate and iron-chelating activity of peptides. The optimal conditions for ultrasound assisted extraction by response surface methodology was at sodium hydroxide concentration 14 g/kg, ultrasonic power 428 W and extraction time 52 min. Under the optimal conditions, protein extraction rate was 64.89%, compared with alkaline extraction of 55.67%. The iron-chelating activity of peptides affected by ultrasound technology was further evaluated by iron-chelating rate, FTIR spectroscopy and LC-HRMS/MS. Alcalase was the suitable enzyme for the preparation of iron-chelating peptides from two abalone viscera proteins, showing no significant difference between their iron-chelating rate of 16.24% (ultrasound assisted extraction) and 16.60% (alkaline extraction). Iron binding sites from the two hydrolysates include amino and carboxylate terminal groups and peptide bond of the peptide backbone as well as amino, imine and carboxylate from side chain groups. Moreover, 24 iron-chelating peptides were identified from hydrolysate (alcalase, ultrasound assisted extraction), which were different from the 27 iron-chelating peptides from hydrolysate (alcalase, alkaline extraction). This study suggests the application of ultrasound technology in the generation of abalone viscera-derived iron-chelating peptides which have the ability to combat iron deficiency.  相似文献   

15.
The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible for the folding of such peptide molecules and proteins). The potential energy surfaces have been calculated ab initio within the framework of the density functional theory taking into account all electrons in the system. The probabilities of transitions between various stable conformations of polypeptide molecules are evaluated. The results are compared to the data obtained by molecular dynamics simulations and to the available experimental data. The influence of the secondary structure of the polypeptide chain on its conformational properties with respect to rotations has been studied. It is shown that, in a chain of six amino acid (Ala) residues, the secondary structure type (helix or sheet conformation) influences the stable isomer states of the polypeptide.  相似文献   

16.
Cellular membranes have relevant roles in processes related to proteases like human kallikreins and cathepsins. As enzyme and substrate may interact with cell membranes and associated co-factors, it is important to take into account the behavior of peptide substrates in the lipid environment. In this paper we report an study based on energy transfer in two bradykinin derived peptides labeled with the donor-acceptor pair Abz/Eddnp (ortho-aminobenzoic acid/N-[2,4-dinitrophenyl]-ethylenediamine). Time-resolved fluorescence experiments were performed in phosphate buffer and in the presence of large unilamelar vesicles of phospholipids, and of micelles of sodium dodecyl sulphate (SDS). The decay kinetics were analyzed using the program CONTIN to obtain end-to-end distance distribution functions f(r). Despite of the large difference in the number of residues the end-to-end distance of the longer peptide (9 amino acid residues) is only 20?% larger than the values obtained for the shorter peptide (5 amino acid residues). The proline residue, in position 4 of the bradykinin sequence promotes a turn in the longer peptide chain, shortening its end-to-end distance. The surfactant SDS has a strong disorganizing effect, substantially broadening the distance distributions, while temperature increase has mild effects in the flexibility of the chains, causing small increase in the distribution width. The interaction with phospholipid vesicles stabilizes more compact conformations, decreasing end-to-end distances in the peptides. Anisotropy experiments showed that rotational diffusion was not severely affected by the interaction with the vesicles, suggesting a location for the peptides in the surface region of the bilayer, a result consistent with small effect of lipid phase transition on the peptides conformations.  相似文献   

17.
蜂毒肽非特异性地靶向杀伤细菌具有重要的生物医学应用前景. 利用荧光光谱与荧光显微考察了蜂毒肽与单组分、多组分磷脂膜的作用机制. 发现对于不同电性与相态的磷脂膜, 肽-膜作用呈现为稳定桶板型孔、非稳U型孔及变薄裂解等多种机制, 具有显著不同的内含物泄露效率. 多组分磷脂囊泡的泄露实验表明, 泄露由肽亲和性较强的磷脂组分决定. 相较于凝胶相磷脂, 蜂毒肽与液相磷脂的亲和性强, 凝胶-液相混合囊泡与纯液相磷脂囊泡的泄露性质相近; 相较于双电性磷脂, 蜂毒肽与负电性磷脂的亲和性强, 双电-负电混合囊泡与纯负电磷脂囊泡的泄露性质相近. 研究深化了多肽与多组分生物膜作用机制的理解.  相似文献   

18.
A wide variety of peptides and their natural ability to self-assemble makes them very promising candidates for the fabrication of solid-state devices based on nano- and mesocrystals. In this work, we demonstrate an approach to form peptide composite layers with gold nanoparticles through in situ reduction of chloroauric acid trihydrate by dipeptide and/or dipeptide/formaldehyde mixture in the presence of potassium carbonate at different ratios of components. Appropriate composition of components for the synthesis of highly stable gold colloidal dispersion with particle size of 34–36 nm in dipeptide/formaldehyde solution is formulated. Infrared spectroscopy results indicate that dipeptide participates in the reduction process, conjugation with gold nanoparticles and the self-assembly in 2D, which accompanied by changing peptide chain conformations. The structure and morphology of the peptide composite solid layers with gold nanoparticles on gold, mica and silica surfaces are characterized by atomic force microscopy. In these experiments, the flat particles, dendrites, chains, mesocrystals and Janus particles are observed depending on the solution composition and the substrate/interface used. The latter aspect is studied on the molecular level using computer simulations of individual peptide chains on gold, mica and silica surfaces.  相似文献   

19.
Summary Spider venoms are a rich source of novel pharmacologically and agrochemically interesting compounds that have received increased attention from pharmacologists and biochemists in recent years. The application of technologies derived from genomics and proteomics have led to the discovery of the enormous molecular diversity of those venoms, which consist mainly of peptides and proteins. The molecular diversity of spider peptides has been revealed by mass spectrometry and appears to be based on a limited set of structural scaffolds. Genetic analysis has led to a further understanding of the molecular evolution mechanisms presiding over the generation of these combinatorial peptide libraries. Gene duplication and focal hypermutation, which has been described in cone snails, appear to be common mechanisms to venomous mollusks and spiders. Post-translational modifications, fine structural variations and new molecular scaffolds are other potential mechanisms of toxin diversification, leading to the pharmacologically complex cocktails used for predation and defense.  相似文献   

20.
Five alternating polar/hydrophobic oligopeptides derived from EAK 16 (AEAEAKAKAEAEAKAK) were examined in comparison with EAK 16 (peptide 1) both after solubilisation/lyophilisation and deposition on oxidised titanium surfaces. The peptides were synthesised for their possible use as biomimetic materials due to their self‐assembling properties and the presence, in one of them, of the arginine‐glycine‐aspartic (RGD) sequence, an active modulator of cell adhesion. Infrared (IR) and Raman spectroscopies were used to investigate the influence of the amino acid substitution on the self‐assembling properties of the peptides under both experimental conditions. In the lyophilised peptides, β‐sheet was the prevailing conformation (65–69%) as in EAK 16, irrespective of acid substitution (E→D, peptide 2), basic substitution (K→O, peptide 3), hydrophobic spacer substitution (A→Abu, peptide 4 and A→Y, peptide 5) and RGD insertion (peptide 6). After deposition on oxidised titanium, the main conformation remained β‐sheet. The side‐chain shortening of the acidic amino acid residue (peptide 2) or the insertion of a rigid and bulky residue such as Y (peptide 5) decreased the self‐assembling ability more than the side‐chain shortening of the basic amino acid residue (peptide 3) or the insertion of the RGD head (peptide 6). The interaction with the oxidised titanium surface was mainly due to carboxylate groups with a bidentate bridging coordination and C  O peptidic groups. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号