首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.

Background  

Bone marrow mesenchymal stem cells (MSCs) are one of the potential tools for treatment of the spinal cord injury; however, the survival and differentiation of MSCs in an injured spinal cord still need to be improved. In the present study, we investigated whether Governor Vessel electro-acupuncture (EA) could efficiently promote bone marrow mesenchymal stem cells (MSCs) survival and differentiation, axonal regeneration and finally, functional recovery in the transected spinal cord.  相似文献   

2.
A poly(lactic-co-glycolic acid)-poly(ethylene glycol)-carboxyl (PLGA-PEG-COOH) and gelatin-based microparticles (MPs) dual delivery system for release of bone morphogenetic protein-2 (BMP-2) and insulin-like growth factor-1 (IGF-1) is developed. The delivery system is characterized based on its morphology, loading capacity, encapsulation efficiency, and release kinetics. The effects of electron beam (EB) sterilization on BMP-2 and IGF-1-loaded MPs and their biological effects are examined. The synergistic effect of a controlled dual release of BMP-2 and IGF-1 on osteogenesis of human mesenchymal stem cells (MSCs) is evaluated. Encapsulation efficiency of growth factors into gelatin and PLGA-PEG-COOH MPs is in the range of 64.78% to 76.11%. E-beam sterilized growth factor delivery systems are effective in significantly promoting osteogenesis of MSCs, although E-beam sterilization decreases the bioactivity of growth factors in MPs by ≈22%. BMP-2 release behavior from gelatin MPs/PEG hydrogel shows a faster release (52.7%) than that of IGF-1 from the PLGA-PEG-COOH MPs/PEG hydrogel (27.3%). The results demonstrate that the gelatin and PLGA-PEG-COOH MPs-based delivery system can realize temporal release of therapeutic biomolecules by incorporating different growth factors into distinct microparticles. EB sterilization is an accessible method for sterilizing growth factors-loaded carriers, which can pave the way for implementing growth factor delivery in clinical applications.  相似文献   

3.
The present work reports the effect of light on the open-circuit voltage of a photoelectrochemical cell (PEC) formed of TiO2 photoanode, Pt cathode and Na2SO4 (0.35 M) aqueous solution as electrolyte. The studies included the measurements of the electromotive force (EMF) during the light-off and light-on cycles for the PEC involving photoanode that was made of both oxidised and reduced TiO2 thin films. These specimens were formed by oxidation of the titanium metal at high and low oxygen activities. This was achieved by the imposition of the gas phase of two different compositions, including air, p(O2) = 21 kPa, and the hydrogen–water vapour mixture, p(O2) = 10-10p({\rm O}_2) = 10^{-10} Pa, at 1,123 K and subsequent cooling to room temperature. The determined data indicate that the PEC formed of the oxidised specimen exhibits larger EMF and a substantially better stability in time. It is, therefore, concluded that the TiO2 obtained in air exhibits superior performance-related properties compared to the reduced specimen. The obtained experimental EMF data are considered in terms of the effect of light on the reactivity of TiO2 with oxygen and water and the related charge transfer.  相似文献   

4.
The study aimed to correlate cell proliferation inhibition with oxidative stress and p53 protein expression in cancerous cells. Hydroxyapatite (HAP) (Ca10(PO4)6(OH)2) is the essential component of inorganic composition in human bone. It has been found to have obvious inhibitory function on growth of many kinds of tumor cells and its nanoparticle has stronger anti-cancerous effect than macromolecule microparticles. Human breast cancer cells (MCF-7) were cultured and treated with HAP nanoparticles at various concentrations. Cells viability was detected with MTT colorimetric assay. The morphology of the cancerous cells was performed by transmission electron microscopy and the expression of a cell apoptosis related gene (p53) was determined by ELISA assay and flow cytometry (FCM). The intracellular reactive oxygen species (ROS) level in HAP exposed cells was measured by H2DCFDA staining. DNA damage was measured by single-cell gel electrophoresis assay. The statistical analysis was done by one way ANOVA. The cellular proliferation inhibition rate was significantly (p < 0.05) increasing in a dose-dependent manner of HAP nanoparticles. Cell apoptotic characters were observed after MCF-7 cells were treated by HAP nanoparticles for 48 h. Moreover, ELISA assay and FCM shows a dose-dependent activation of p53 in MCF-7 cells treated with nanoHAP. These causative factors of the above results may be justified by an overproduction of ROS. In this study, a significant (p < 0.05) increase in the level of intracellular ROS in HAP-treated cells was observed. This study shows that HAP inhibits the growth of human breast cancer MCF-7 cells as well as induces cell apoptosis. This study shows that HAP NPs Induce the production of intracellular reactive oxygen species and activate p53, which may be responsible for DNA damage and cell apoptosis.  相似文献   

5.
Multifunctional magnetic microcapsules (MMCs) for the combined cancer cells hyperthermia and chemotherapy in addition to MR imaging are successfully developed. A classical layer‐by‐layer technique of oppositely charged polyelectrolytes (poly(allylamine hydrochloride) (PAH) and poly(4‐styrene sulfonate sodium) (PSS)) is used as it affords great controllability over the preparation together with enhanced loading of the chemotherapeutic drug (doxorubicin, DOX) in the microcapsules. Superparamagnetic iron oxide (SPIOs) nanoparticles are layered in the system to afford MMC1 (one SPIOs layer) and MMC2 (two SPIOs layers). Most interestingly, MMC1 and MMC2 show efficient hyperthermia cell death and controlled DOX release although their magnetic saturation value falls below 2.5 emu g?1, which is lower than the 7–22 emu g?1 reported to be the minimum value needed for biomedical applications. Moreover, MMCs are pH responsive where a pH 5.5 (often reported for cancer cells) combined with hyperthermia increases DOX release predictably. Both systems prove viable when used as T2 contrast agents for MR imaging in HeLa cells with high biocompatibility. Thus, MMCs hold a great promise to be used commercially as a theranostic platform as they are controllably prepared, reproducibly enhanced, and serve as drug delivery, hyperthermia, and MRI contrast agents at the same time.  相似文献   

6.

Background  

In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs) are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors.  相似文献   

7.
In this work, we report on the magnetic properties of nickel nanoparticles (NP) in a SiO2–C thin film matrix, prepared by a polymeric precursor method, with Ni content x in the 0–10 wt% range. Microstructural analyses of the films showed that the Ni NP are homogenously distributed in the SiO2–C matrix and have spherical shape with average diameter of ~10 nm. The magnetic properties reveal features of superparamagnetism with blocking temperatures T B ~ 10 K. The average diameter of the Ni NP, estimated from magnetization measurements, was found to be ~4 nm for the x = 3 wt% Ni sample, in excellent agreement with X-ray diffraction data. M versus H hysteresis loops indicated that the Ni NP are free from a surrounding oxide layer. We have also observed that coercivity (H C) develops appreciably below T B, and follows the H C ∝ [1 – (T/T B)0.5] relationship, a feature expected for randomly oriented and non-interacting nanoparticles. The extrapolation of H C to 0 K indicates that coercivity decreases with increasing x, suggesting that dipolar interactions may be relevant in films with x > 3 wt% Ni.  相似文献   

8.
We fabricated the photoelectrochemical (PEC) cells using n-type TiO2 and metal (Pt, Pd)-decorated carbon nanotubes (CNTs) as an anode and a cathode, respectively. Photovoltaic effects were clearly observed. Compared with conventional PEC cell with Pt cathode, a larger photo-voltage was found in the PEC cells with the metal-decorated CNT cathode due to p-type semiconducting properties of CNTs. Additionally, we connected two PEC cells in series to decompose water into oxygen and hydrogen. Indeed, the connected PEC cells yielded the photo-voltage of about 1.35 V, which is larger than 1.23 V required for water splitting. This result demonstrates the possibility of hydrogen generation using the connected PEC cells without an external bias.  相似文献   

9.
A distinct enhancement of upconversion luminescence from core to core/shell (C/S) structure under low flux near infrared (NIR) excitation at 976 nm has been achieved in lanthanide (Er3+, Yb3+)-doped NaYF4 core with undoped NaYF4 shell nanoparticles (NP). A green chemistry approach has been taken to synthesize monodisperse monophasic C/S NP with the core (~20 nm) and shell (~5 nm) crystallizing into cubic phase. Hydrophobic C/S NP have been further made hydrophilic by coating a transparent SHMP layer without affecting luminescence. C/S (NaYF4: Er, Yb/NaYF4) NP integrated dye-sensitized solar cell indicated 11.9% enhancement in overall conversion efficiency under AM 1.5 conditions, due to NIR–visible spectrum modification by fluorescent NPs. The results indicate great potential of such upconverting C/S nanophosphor in solar cell applications.  相似文献   

10.
We synthesized oxygen and paclitaxel (PTX) loaded lipid microbubbles (OPLMBs) for ultrasound mediated combination therapy in hypoxic ovarian cancer cells. Our experiments successfully demonstrated that ultrasound induced OPLMBs destruction significantly enhanced the local oxygen release. We also demonstrated that OPLMBs in combination with ultrasound (300 kHz, 0.5 W/cm2, 15 s) yielded anti-proliferative activities of 52.8 ± 2.75% and cell apoptosis ratio of 35.25 ± 0.17% in hypoxic cells at 24 h after the treatment, superior to other treatment groups such as PTX only and PTX-loaded MBs (PLMBs) with or without ultrasound mediation. RT-PCR and Western blot tests further confirmed the reduced expression of HIF-1α and MDR-1/P-gp after ultrasound mediation of OPLMBs. Our experiment suggests that ultrasound mediation of oxygen and drug-loaded MBs may be a useful method to overcome chemoresistance in the hypoxic ovarian cancer cells.  相似文献   

11.
OBJECTIVE: The aim of this study was to label human umbilical cord blood mesenchymal stem cells (MSCs) with poly-l-lysine (PLL)-conjugated superparamagnetic iron oxide particles and to obtain magnetic resonance (MR) images of the labeled MSCs' suspension at 1.5 T. MATERIAL AND METHODS: PLL was conjugated with iron oxide to form superparamagnetic particles called Fe(2)O(3)-PLL. Human umbilical cord blood MSCs were isolated, purified, expanded and incubated with Fe(2)O(3)-PLL. Prussian blue stain was performed to show intracellular iron; spectrometry was used to quantify iron uptake within cells. Tetrazolium salt (MTT) assay was applied to evaluate toxicity and proliferation of MSCs labeled with various concentrations of Fe(2)O(3)-PLL. The cell apoptosis rate was determined by annexin V/propichium iodide (PI) double staining method. Vials containing cells underwent MR imaging (MRI) with T(1), T(2) and T(2)* weighted MRI. RESULTS: Iron-containing intracytoplasmatic vesicles could be observed clearly with Prussian blue staining in all samples except the unlabeled control. The iron content per cell determined by spectrometry was 64.51+/-10.32 pg. Among MSCs with and without labeling of various concentrations of Fe(2)O(3)-PLL, MTT values of light absorption had no statistically significant difference (Kruskal-Wallis test, chi(2)=10.35, P=.17). A concentration at 20 mug/ml of iron appeared most suitable for incubating cells. Of labeled and unlabeled MSCs, the early [annexin V-fluorescein isothiocyanate (FITC)-positive/PI-negative] and late (annexin V-FITC-positive/PI-positive) apoptotic cells were 10.34+/-0.43%/11.36+/-1.30% and 4.01+/-1.76%/2.98+/-1.37%, respectively, and there were no significant differences between them (P>.05). T(2) weighted image (WI) and T(2)*WI demonstrated significant decrease of signal intensity (SI) in vials containing 1 x 10(6) (1 day), 1x10(6) (8 days) and 5 x 10(5) labeled cells, in comparison with unlabeled cells (P<.05). The percentage change of SI (DeltaSI) was significantly higher in 10(6) labeled cells after 1-day culture than that in the same number of labeled cells after 8-day culture and that in 5 x 10(5) labeled cells, particularly on T(2)*WI (P<.05). Among pulse sequences, T(2)*WI demonstrated the highest DeltaSI (P<.05). CONCLUSION: The human umbilical cord blood MSCs can be labeled with Fe(2)O(3)-PLL without significant change in viability and apoptosis. The suspension of labeled MSCs can be imaged with standard 1.5-T MR equipment.  相似文献   

12.
Pumpkin seed oil (PSO), which is a valuable compound with high nutritional value used for the prevention of various chronic diseases, is prone to oxidation. In this work, small and uniform (su) ovalbumin (OVA) and pectin (PEC) were used to stabilize PSO in the form of an emulsion. The results showed that suOVA-PEC-PSO emulsion with a droplet size of 9.82 ± 0.05 μm was successfully self-assembled from PSO, PEC, and suOVA solution (with a droplet size of 230.13 ± 14.10 nm) treated with 300 W ultrasound, owing to the formation of a more stable interfacial film on the surface of droplets. The interfacial, rheological, emulsifying, and antioxidant properties of the suOVA-PES-PSO emulsions were excellent, owing to the synergistic effects between PEC and suOVA solution. Moreover, the physical stability of the suOVA-PEC-PSO emulsions to salt stress, a freeze-thaw cycle, and heat treatment was also increased and the oxidation of linolenic acid was notably delayed. These results have extended the food-related applications of OVA and PSO, and provide a promising foundation for further exploration of the self-assembly of composite emulsions by small and uniform proteins.  相似文献   

13.
The plasma-treated pyrite (PTP) nanostructures were prepared from natural pyrite (NP) utilizing argon plasma due to its sputtering and cleaning effects resulting in more active surface area. The NP and PTP were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET) and scanning electron microscopy (SEM) methods. The performance of the PTP was greater than NP for treatment of Reactive Red 84 (RR84) by the heterogeneous sono-Fenton process. The optimum amounts of main operational parameters were obtained as PTP of 4 g/L, initial dye concentration of 10 mg/L, pH of 5, and ultrasonic power of 300 W after 120 min of reaction time. Also, the effects of enhancers, and inorganic salts and t-butanol as hydroxyl radical scavengers on the degradation efficiency were investigated. Gas chromatography–mass spectroscopy analysis (GC–MS) was applied for detection of some degradation intermediates. Environmentally friendly plasma modification of the NP, in situ production of H2O2 and OH radicals, low leached iron concentration and repeated reusability at the milder pH are the significant benefits of the PTP utilization.  相似文献   

14.
The number of studies dealing with nanoparticles (NPs) and plants has increased. They subsidize the advances of agriculture in the 21st century; however, so far, beneficial as well as detrimental results have been reported. In this context, analytical tools for monitoring macronutrients and micronutrients in plants exposed to NPs, with adequate performance and low cost, are required. This work assesses the use of energy-dispersive X-ray fluorescence (EDXRF) spectrometry for elemental content evaluation in NP-containing agricultural samples. For Phaseolus vulgaris (common bean) seedlings treated with ZnO NP, CuO NP, and Fe3O4 NP, the limits of detection (LODs) were 0.4 mg kg−1 for Zn and Cu and 0.6 mg kg−1 for Fe after dry-ashing digestion, thus being suitable for NP oxide monitoring in seed priming. For submicron suspension fertilizers, Mn, Cu, and Zn were quantified as thin films after sample dilution. The LODs for Mn, Cu, and Zn were 0.09, 0.1, and 0.08 mg L−1, respectively. Finally, for P. vulgaris plants exposed to 300-nm ZnO NP, we monitored P, S, K, Ca, and Zn directly in powdered leaves, whose LODs ranged from 1.3 to 27 mg kg−1. No critical spectral interference was observed, and notable repeatability and suitable trueness were found in the cases of studies. EDXRF revealed itself a simple, fast, and reliable alternative to evaluate the elemental content in suspensions or the uptake of NP by plants.  相似文献   

15.
Medium energy ion scattering (MEIS) measurements and transmission electron microscopy (TEM) observations are applied to characterize a buried Pb nanoparticle (NP) system synthesized by ion implantation. The NPs are located at the SiO2/Si film interface, forming a dense two-dimensional array. Full 2D (energy and angle) experimental MEIS spectra are compared with Monte Carlo simulated ones. The results demonstrate that MEIS measurements provide microstructural information (mean NP volume of about 150 nm3 and areal density of about 4 × 1011 NP/cm2), but no accurate information on the NP geometrical shape.  相似文献   

16.
We report a temperature sensor based on a Bragg grating written in a benzil dimethyl ketal (BDK) doped multimode (MM) polymer optical fiber (POF) for the first time to our knowledge. The thermal response was further analyzed in view of theory and experiment. In theory, with the order of the reflected mode increasing from 1st to 60th order, for MM silica fiber Bragg grating (FBG) the temperature sensitivity will increase linearly from 16.2 pm/°C to 17.5 pm/°C, while for MM polymer FBG the temperature sensitivity (absolute value) will increase linearly from ?79.5 pm/°C to ?104.4 pm/°C. In addition, temperature sensitivity of MM polymer FBG exhibits almost 1 order larger mode order dependence than that of MM silica FBG. In experiment, the Bragg wavelength shift will decline linearly as the temperature rises, contrary to that of MM silica FBG. The temperature sensitivity of MM polymer FBG is ranged from ?0.097 nm/°C to ?0.111 nm/°C, more than 8 times that of MM silica FBG, showing great potential used as a temperature sensor.  相似文献   

17.
We report a straightforward approach to prepare multifunctional manganese–gold nanoparticles by attaching Mn(II) ions onto the surface of 20 nm citrate-capped gold nanoparticles. In vitro MRI measurements made in agarose gel phantoms exhibited high relaxivity (18.26 ± 1.04 mmol−1 s−1). Controlled incubation of the nanoparticles with mesenchymal stem cells (MSCs) was used to study cellular uptake of these particles and this process appeared to be controlled by the size of the nanoparticle aggregates in the extracellular solution. SEM images of live MSCs showed an increased concentration of particles near the cell membrane and a distribution of the size of particles within the cells. Survivability for MSCs in contact with Mn–Au NPs was greater than 97% over the 3-day period and up to the 1 mM Mn used in this study. The high relaxivity and low cell mortality are suggestive of an enhanced positive contrast agent for in vitro or in vivo applications.  相似文献   

18.
Mesenchymal stem cells (MSCs) were used widely as seed cells in tissue engineering blood vessel construction. However, the biological characteristics difference of different generation MSCs in vitro culture is unknown, which laid a foundation for appropriate generation seeded cells selection for tissue engineering blood vessel construction. In this report, MSCs were isolated from SD rat bone marrow and identified by flow cytometry; cell growth curve test, cell surface antigen expression rate detection, cryopreservation resuscitation rate test, CD31 expression rate test, cell cycle analysis, and adhesion difference on vascular scaffold test were performed. The research results indicated that the MSCs shape was spindle and uniform with vigorous growth. CD105 and CD90 factor expression rate reached 82.5 and 84.9%, respectively, and the expression rate of CD45 was only 7.3%. The proliferation capacity of the fourth generation MSCs were more exuberant, with proliferation index as 20.3%; the cell proliferation index of the eighth generation decreased to only 9.1%. The cryopreservation resuscitation rate of the second generation and fourth generation MSCs were both higher than 80%, and the cryopreservation resuscitation rate of the eighth generation MSCs was only about 60%. After the induction for 5 days, MSCs had weak CD31 expression, and with the prolonged induction time, expression increased. All generation MSCs expressed CD31 after being induced for 10 days; however, the CD31 positive expression rate of the second generation, fourth generation, and sixth generation MSCs had significant difference with the eighth generation MSCs. Adhesion rate of MSCs before sixth generation was around 40%, but the adhesion rate of eighth generation MSCs was only about 27%. In all, biological characteristics of different generation MSCs existed certain differences, and especially the eighth generation MSCs aged seriously, whose cell activity decreased significantly. The researchers believed that the MSCs before the sixth generation can maintain excellent properties of MSCs, and can be used as seed cells for vascular tissue engineering.  相似文献   

19.
Ultrasound is widely used to disinfect drinking water and wastewater due to its strong physical and chemical effects on microorganisms. The aim of this study was to investigate the effect of ultrasound on the destruction of Mycobacterium strain 6PY1. Ultrasound waves (20 kHz or 612 kHz) were used to treat aqueous suspensions of Mycobacterium at different volumes, initial bacterial concentrations, and power densities. At the same power density and the same exposure time, sonication at high frequency resulted in a lower destruction of Mycobacterium sp. 6PY1 (35.5%) than sonication at low frequency (93%). The percentage of removal was not significantly affected by the volume of the irradiated suspension (150–300 ml) or the initial cell concentration (2.15 × 10−3–1.4 × 10−2 mg protein L−1). At low frequency, the removal percentage of Mycobacterium sp. 6PY1 increased with increasing the power density, with a constant level reached after a certain power density. At high frequency, the removal percentage of Mycobacterium sp. 6PY1 increased with increasing the power density. The mechanism of cell killing was investigated by examining the effects of OH radical scavengers such as sodium carbonate. At high frequency the presence of sodium carbonate suppressed the removal process. However, at low frequency the removal process was not affected, thus indicating that OH radicals have a negligible role in this case. The latter result was supported by ten time’s H2O2 production at high frequency greater than that at low frequency.  相似文献   

20.
Ferucarbotran, a clinically used superparamagnetic iron oxide, is widely developed as a magnetic resonance imaging (MRI) contrast agent and has the potential to improve the monitoring of macrophage recirculation in vivo. However, the biological effect of Ferucarbotran or magnetic nanoparticles (MNPs) on macrophage is not clearly understood yet. This study is aimed to examine the immunological impact of Ferucarbotran toward murine peritoneal macrophages. Cells treated with Ferucarbotran demonstrated a dose–responsive increase of granularity in the cytoplasm. After 24 h of incubation, viability and cytotoxicity in macrophages treated with 200 μg Fe/mL of Ferucarbotran were not affected. Macrophages loaded with Ferucarbotran above 100 μg Fe/mL showed a significant (p < 0.01) increase in cytokine (TNF-α, IL-1β, IL-6) secretion and mRNA expression, followed by nitric oxide (NO) secretion and iNOS mRNA expression. Chemotactic responses of Ferucarbotran-preloaded macrophages toward CX3CL1 were significantly (p < 0.05) lower than those of untreated macrophages. Taking together, Ferucarbotran at high dose (100 μg Fe/mL) could induce murine peritoneal macrophages activation in pro-inflammatory cytokine secretion and NO production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号