首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optics of globular photonic crystals   总被引:1,自引:0,他引:1  
V. S. Gorelik 《Laser Physics》2008,18(12):1479-1500
Recent experimental and theoretical results on the optical properties of globular photonic crystals coauthored by the author are presented. The dispersion relation for electromagnetic waves in a 1D photonic crystal that simulates the properties of a selected direction in the globular photonic crystal is calculated. The spectral ranges that are characterized by the anomalous slowing of electromagnetic waves in the photonic crystal and correspond to the stop-band edges are determined. A method for the measurement of the transmission and reflection spectra of the broadband radiation in photonic crystals is proposed. The method enables one to find the characteristics of the stop bands. The features of the secondary emission that emerges in opals due to the UV and visible excitation are reported. The conditions for the low-threshold lasing in opals filled with rareearth elements are presented. The experimental results on the induced-globular light scattering are demonstrated. Such a scattering implies the coherent excitation of vibrational states of the globules in a globular photonic crystal. A new phenomenon (slow light scattering) which involves the excitation of slow photons (slowtons) that correspond to the stop-band edges of the photonic crystal is observed. The conditions for the measurement of the slow light scattering in opals excited using the ruby and nitrogen lasers are experimentally determined. The experimental and theoretical results open up the prospects for low-threshold nonlinear optical processes in material media.  相似文献   

2.
Acoustic properties of globular photonic crystals based on synthetic opals and composed of closely packed SiO2 globules about 200 nm in diameter are theoretically investigated. Dispersion characteristics of the investigated samples are numerically simulated, and the group velocity of acoustic waves and the effective mass of acoustic phonons are found. It is shown that phononic bandgaps in these photonic crystals are within the gigahertz frequency range. The effective mass of the acoustic phonons corresponding to the edges of the bandgaps is found, and a possibility that bound states of acoustic phonon pairs, biphonons, manifest themselves in the light scattering spectra is discussed.  相似文献   

3.
We have studied optoelectronic properties of photonic nanowires doped with an ensemble of four-level nanoparticles. Nanowires are made from two photonic crystals A and B where crystal A is embedded in B. Photons are confined with the photonic nanowire due to the band structure engineering of crystals A and B. A probe field is applied to monitor the absorption spectrum, and a control field is applied to shift the position of absorption peak. It is considered that nanoparticles are interacting with bound photon states of the nanowire. It is found that the number of bound states in the wire depends on the size and the energy depth of the wire. It is also found that when the resonance energy lies near the bound state, the system goes from absorbing state to the transparent state. This is due to the strong coupling between nanoparticles and bound photons in the wire. The control field switches the system from the transparent state to the absorbing state by changing the location of the resonance energy. The present findings can be used to make new types of optoelectronic switches.  相似文献   

4.
Tingting Bian 《Optik》2009,120(14):736-27166
The transmission properties of one-dimensional photonic quantum well structure produced by inserting defect layers into dispersive photonic crystals have been investigated. These photonic crystals are stacked alternatively with two kinds of dispersive material layers. The inserted layers structure is another kind of dispersive photonic crystal. It has been turned out that the confined states are quantized.  相似文献   

5.
The optical properties of three-dimensional photonic crystals associated with the form of reflection spectra from their surface (appearance of a forbidden gap in the energy spectrum) and with the specific features of Raman scattering are analyzed. Idealized models of the energy band structure of photonic crystals are studied. Expressions for the group velocity of photons with energy close to the forbidden gap are derived. Experimental results on the Raman scattering in photonic crystals based on artificial opal as well as in fused silica are discussed. Bands due to quantum-size effects (presence of nanoclusters in fused silica and nanoglobules forming the lattice of globular photonic crystals) were manifested in the spectra of inelastic light scattering. It is proposed to use photonic crystals for the creation of sensitive sensors of organic and inorganic substances using modern Raman techniques.  相似文献   

6.
We show that photonic crystals with ring-shaped holes (RPhCs) exhibit superior properties compared to conventional photonic crystals (PhCs). At low air-fill factors RPhCs can have a larger bandgap than conventional PhCs. Moreover, RPhC waveguides with both high group index and small group velocity dispersion can be designed. RPhC waveguides are also more sensitive to external refractive index changes, which is attractive for sensor applications. Finally we set up a procedure to pattern RPhCs in silicon-on-insulator.  相似文献   

7.
A review of the properties of silicon-based two-dimensional (2D) photonic crystals is given, essentially infinite 2D photonic crystals made from macroporous silicon and photonic crystal slabs based on silicon-on-insulator basis. We discuss the bulk photonic crystal properties with particular attention to the light cone and its impact on the band structure. The application for wave guiding is discussed for both material systems, and compared to classical waveguides based on index-guiding. Losses of resonant waveguide modes above the light line are discussed in detail.  相似文献   

8.
At the point Γ of the Brillouin zone of photonic crystals (PCs), there are many photonic band (PB) states that do not couple to the incoming plane wave beams. This paper investigates how to excite these optically inactive PB (OIPB) modes in slab PCs by using optical means. Three methods are proposed, using a prism, traveling charges and focused laser pulses, each making use of evanescent light to excite OIPBs. It is concluded that to accumulate photons in an OIPB, sequential passing of bunched charges or intermittent irradiation of focused laser pulses is effective. The effect of the lateral size of the practical PC slabs is also discussed and it is found that the conclusions for an ideal system of infinite size still work if the lateral size is order of magnitudes larger than the PC lattice constant.  相似文献   

9.
The characteristics of stimulated globular scattering such as the frequency shift, threshold, and conversion efficiency are studied in photonic crystals (synthetic opal matrices and opal nanocomposites) at different temperatures. The results are compared with the study of stimulated Raman scattering in calcite single crystals. In both cases, a decrease in temperature from +20° C to −196° C resulted in an increase in the energy of stimulated scattering energy and its redistribution into the higher-order components.  相似文献   

10.
We numerically analyze ultra-refraction and slow-light in lithium niobate photonic crystals in order to investigate and then optimize the efficiency of a tunable photonic crystal superprism. In contrast to a passive superprism 1-to-N demultiplexer, we describe a tunable bandpass filter with only three output ports. The electro-optic effect in lithium niobate is used to achieve tunability, with the filter bandwidth shifting in wavelength as the refractive index of the superprism is modified by an externally applied electric field. Such a device could be used to realize a compact and fast wavelength multiplexer/demultiplexer for telecommunications or optical interconnect applications. We calculate constant frequency dispersion contours (plane-wave expansion) to identify initial configurations that show significant ultra-refraction, and verify the expected behavior of light propagation inside the structure using 2D FDTD (finite difference time domain) simulations. We show that the voltage requirements of such an electro-optically tunable superprism could potentially be relaxed by exploiting the enhancement of the electro-optic effect recently discovered by our group [M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F.I. Baida, Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons. Appl. Phys. Lett. 89 (24) (2006) 241110], which we believe to be due to the presence of slow-light in the nanostructure. We present a methodology that readily identifies superprism design points showing both strong ultra-refraction as well as low group velocity. However, we find that this improved voltage efficiency comes at the cost of reduced operating bandwidth and increased insertion losses due to proximity to the band-edge.  相似文献   

11.
Qiaofen Zhu  Dayong Wang 《Optik》2011,122(4):330-332
The photonic band gaps in one-dimensional photonic crystals (PCs) are theoretically investigated. A new method to broaden the photonic band gaps is introduced. Based on the similar method, a kind of photonic crystals is constructed to generate photonic band gaps with proportioned central frequencies. This technology can be used for designing nonlinear PCs for harmonic generation.  相似文献   

12.
G.Q. Liu  H.H. Hu  Z.S. Wang  Z.M. Liu 《Optik》2011,122(1):9-14953
High quality photonic crystal heterostructures with a thin titania planar defect layer between its two constitutional photonic crystals were fabricated and their structural and optical properties were analyzed. The results suggest that the thin planar defect layer is beneficial to separate the two constitutional photonic crystals from each other and to reduce the roughness of the interface. The quality of the resulting photonic crystal heterostructures is improved largely and the main features of the photonic band gaps of the two constitutional photonic crystals are inherited. The predominant optical quality of these heterostructures (e.g. deep double photonic band gaps and steep photonic band edges) may afford new flexibility and functionality for engineered photonic behavior in practical devices such as late-model light-operated switches.  相似文献   

13.
Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.  相似文献   

14.
In this article, we investigate how the photonic band gaps and the variety of band dispersions of photonic crystals can be utilized for various applications and how they further give rise to completely novel optical phenomena. The enhancement of spontaneous emission through coupled cavity waveguides in a one-dimensional silicon nitride photonic microcrystal is investigated. We then present the highly directive radiation from sources embedded in two-dimensional photonic crystals. The manifestation of novel and intriguing optical properties of photonic crystals are exemplified experimentally by the negative refraction and the focusing of electromagnetic waves through a photonic crystal slab with subwavelength resolution.  相似文献   

15.
A. Hatef 《Optics Communications》2011,284(9):2363-5383
In this paper we have developed a theory for the decay of a quantum dot doped in a two-dimensional metallic photonic crystal consisting of two different metallic pillars in an air background medium. This crystal structure forms a full two-dimensional photonic band gap when the appropriate pillar sizes are chosen. The advantage of using two metals is that one can easily control the density of states and optical properties of these photonic crystals by changing the plasma energies of two metals rather than one. Using the Schrödinger equation method and the photonic density of states, we calculated the linewidth broadening and the spectral function of radiation due to spontaneous emission for two-level quantum dots doped in the system. Our results show that by changing the plasma energies one can control spontaneous emission of quantum dots doped in the metallic photonic crystal.  相似文献   

16.
一维和二维系统中电子禁带与光子禁带的数学等价特性   总被引:2,自引:1,他引:1  
论证了在不针对特殊的结构和未做任何近似的情况下,一维和二维系统中的电子的Schrdinger方程和沿垂直方向传播的S极化光子的Maxwell方程具有完全相同的数学形式,即二者在数学上是完全等价的,这自然解释了到目前为止发现的存在于电子晶体的电子禁带和光子晶体的光子禁带之间的许多相似性.这种等价性还表明,在电子晶体中出现的许多现象可以推广到光子晶体中;研究电子晶体的理论和方法也可以应用于光子晶体的研究中去.  相似文献   

17.
Calculations for the relative width (Δω/ω0) as a function of refractive index and relative radius of the photonic band gap for the fcc closed packed 3-D dielectric microstructure are reported and comparison of experimental observations and theoretical predictions are given. This work is useful for the understanding of photonic crystals and occurrence of the photonic band gap.  相似文献   

18.
Bulletin of the Lebedev Physics Institute - The properties of electromagnetic field surface states in globular photonic crystals are analyzed using numerical solution of Maxwell equations by the...  相似文献   

19.
Jacquin  O.  Benyattou  T.  Desieres  Y.  Orobtchouk  R.  Cachard  A.  Benech  P. 《Optical and Quantum Electronics》2000,32(6-8):935-945
The concept of the photonic band gap (PBG) structures stems from ideas of Yablonovitch. The idea is to design components so that they affect the properties of photons, in much the same way that ordinary semiconductor crystals affect the properties of electrons. In fact, the PBG structures forbid propagation of photons for a particular range of energy. They can be used to realise optical filters with large stop band and sharp transmission resonance. In the guided PBG structures, the existence of diffractive effects in the vertical dimension could limit the quality factor of such filters. In this paper, we have investigated the origin of diffraction losses in one-dimensional guided PGB structures using 2D and 3D numerical tools. We propose an analytical approach based on Bragg diffraction relation to explain these losses phenomenon. From this approach, the influence of some design parameters on the electromagnetic behaviour and the spectral response of PBG resonators will be explained.  相似文献   

20.
Based on the polystyrene material of low refractive index, light localization in photonic bandgaps of two kinds of 2D octagonal quasiperiodic photonic crystal slabs are investigated in theory, including the air-rod polystyrene slab and polystyrene-rod slab. The properties of bandgaps and localized modes in both two defect-free patterns are analyzed in detail. When a single-point defect is introduced into two quasiperiodic structures, the position of emerging defect modes and the red-shifting of resonant modes in wavelength are observed quite differently when the defect microcavity is increased in size. This difference is caused by the competition of two physical mechanisms, which are the effect of defect energy levels caused by defects introduced into photonic crystals and the resonance of modes in the defect cavity. These results will provide theoretical support for experimental fabrication of organic light-emitting quasiperiodic photonic crystal devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号