首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I numerically simulate and compare the entanglement of two quanta using the conventional formulation of quantum mechanics and a time-symmetric formulation that has no collapse postulate. The experimental predictions of the two formulations are identical, but the entanglement predictions are significantly different. The time-symmetric formulation reveals an experimentally testable discrepancy in the original quantum analysis of the Hanbury Brown–Twiss experiment, suggests solutions to some parts of the nonlocality and measurement problems, fixes known time asymmetries in the conventional formulation, and answers Bell’s question “How do you convert an ’and’ into an ’or’?”  相似文献   

2.
In this letter I study the concept of time-reversal invariance in both classical and quantum physics in the absence of time-translation invariance (explicit time dependence/external time-dependent fields). Accordingly I generalize the concept of time-reversed process when the time-origin of the process has physical significance. The cases of classical physics, standard quantum mechanics and time-neutral quantum mechanics with and without explicit time dependence are discussed.  相似文献   

3.
Proposal for a quantum delayed-choice experiment   总被引:1,自引:0,他引:1  
Gedanken experiments help to reconcile our classical intuition with quantum mechanics and nowadays are routinely performed in the laboratory. An important open question is the quantum behavior of the controlling devices in such experiments. We propose a framework to analyze quantum-controlled experiments and illustrate it by discussing a quantum version of Wheeler's delayed-choice experiment. Using a quantum control has several consequences. First, it enables us to measure complementary phenomena with a single experimental setup, pointing to a redefinition of complementarity principle. Second, it allows us to prove there are no consistent hidden-variable theories having "particle" and "wave" as realistic properties. Finally, it shows that a photon can have a morphing behavior between particle and wave. The framework can be extended to other experiments (e.g., Bell inequality).  相似文献   

4.
A classical analogy of quantum mechanical entanglement is presented, using classical light beams. The analogy can be pushed a long way, only to reach its limits when we try to represent multiparticle, or nonlocal, entanglement. This demonstrates that the latter is of exclusive quantum nature. On the other hand, the entanglement of different degrees of freedom of the same particle might be considered classical. The classical analog cannot replace Einstein-Podolsky-Rosen type experiments, nor can it be used to build a quantum computer. Nevertheless, it does provide a reliable guide to the intuition and a tool for visualizing abstract concepts in low-dimensional Hilbert spaces.  相似文献   

5.
A time-symmetric formulation of nonrelativistic quantum mechanics is developed by applying two consecutive boundary conditions onto solutions of a time- symmetrized wave equation. From known probabilities in ordinary quantum mechanics, a time-symmetric parameter P0 is then derived that properly weights the likelihood of any complete sequence of measurement outcomes on a quantum system. The results appear to match standard quantum mechanics, but do so without requiring a time-asymmetric collapse of the wavefunction upon measurement, thereby realigning quantum mechanics with an important fundamental symmetry.  相似文献   

6.
A retrocausal interpretation of quantum mechanics is examined and is applied to the problem of measuring an optical qubit before the qubit is actually created. Although the predictions of the retrocausal interpretation are the same as for the conventional causal picture, it provides a new perspective which should give a useful way of understanding some quantum mechanical processes.  相似文献   

7.
This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called “microscopic theory”, applicable to any closed system S of arbitrary size N, using concepts referring to S alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of classical mechanics, which serves as the template for a minimal quantum theory. The only substantive assumption required is the replacement of the classical Euclidean phase space by Hilbert space in the quantum case, with the attendant all-important phenomenon of quantum incompatibility. Two fundamental theorems of Hilbert space, the Kochen–Specker–Bell theorem and Gleason’s theorem, then lead inevitably to the well-known Born probability rule. For both classical and quantum mechanics, questions of physical implementation and experimental verification of the predictions of the theories are the domain of the macroscopic theory, which is argued to be a special case or application of the more general microscopic theory.  相似文献   

8.
Wave aspects inherent in quantum physics lead to observable consequences, which are far removed from classical intuition. The possibility of interaction-free measurement is one consequence of quantum wave nature at the single particle level. To date, all experiments, which have studied interaction-free measurements, have dealt with modification of the amplitude of the wave function. In this paper, we discuss interaction-free measurements of a second type, where only the phase of the wave function is modified. We show that an example discussed by Penrose is in this class and clarify the physical reasons for loss of interference in such measurements. We discuss the experimental feasibility of interaction-free measurements of the second type, employing micromaser cavities and atom interferometers. One scheme leads to the possibility of interactionfree measurement of the finesse of the cavity by observing atoms that never interacted with the cavity. The loss of interference, in this case, is due to a random spinor phase and there is no Heisenberg momentum back-action. This is the first experimental proposal for interaction-free measurements of pure phase changes.  相似文献   

9.
In this work we describe the effect of classical and quantum noise on the Berry phase. It is not a topical review article but rather an overview of our work in this field aiming at giving a simple pictorial intuition of our results.  相似文献   

10.
J.L. Fry 《Annals of Physics》2010,325(12):2668-2678
Quantum and classical mechanics are two conceptually and mathematically different theories of physics, and yet they do use the same concept of classical mass that was originally introduced by Newton in his formulation of the laws of dynamics. In this paper, physical consequences of using the classical mass by both theories are explored, and a novel approach that allows formulating fundamental (Galilean invariant) theories of waves and particles without formally introducing the classical mass is presented. In this new formulation, the theories depend only on one common parameter called ‘wave mass’, which is deduced from experiments for selected elementary particles and for the classical mass of one kilogram. It is shown that quantum theory with the wave mass is independent of the Planck constant and that higher accuracy of performing calculations can be attained by such theory. Natural units in connection with the presented approach are also discussed and justification beyond dimensional analysis is given for the particular choice of such units.  相似文献   

11.
Quantum mechanics has many counter-intuitive consequences which contradict our intuition which is based on classical physics. Here we discuss a special aspect of quantum mechanics, namely the possibility of entanglement between two or more particles. We will establish the basic properties of entanglement using quantum state teleportation. These principles will then allow us to formulate quantitative measures of entanglement. Finally we will show that the same general principles can also be used to prove seemingly difficult questions regarding entanglement dynamics very easily. This will be used to motivate the hope that we can construct a thermodynamics of entanglement.  相似文献   

12.
The Quantum Speed up as Advanced Cognition of?the?Solution   总被引:1,自引:1,他引:0  
Solving a problem requires a problem solving step (deriving, from the formulation of the problem, the solution algorithm) and a computation step (running the algorithm). The latter step is generally oblivious of the former. We unify the two steps into a single physical interaction: a many body interaction in an idealized classical framework, a measurement interaction in the quantum framework. The many body interaction is a useful conceptual reference. The coordinates of the moving parts of a perfect machine are submitted to a relation representing problem-solution interdependence. Moving an “input” part nondeterministically produces a solution through a many body interaction. The kinematics and the statistics of this problem solving mechanism apply to quantum computation—once the physical representation is extended to the oracle that produces the problem. Configuration space is replaced by phase space. The relation between the coordinates of the machine parts now applies to a set of variables representing the populations of the qubits of a quantum register during reduction. The many body interaction is replaced by the measurement interaction, which changes the population variables from the values before to the values after measurement (and the forward evolution into the backward evolution, the same unitary transformation but ending with the state after measurement). Quantum computation is reduction on the solution of the problem under the problem-solution interdependence relation. The speed up is explained by a simple consideration of time-symmetry, it is the gain of information about the solution due to backdating, to before running the algorithm, a time-symmetric part of the reduction on the solution. This advanced cognition of the solution reduces the solution space to be explored by the algorithm. The quantum algorithm takes the time taken by a classical algorithm that knows in advance 50% of the information acquired by reading the solution (i.e. by measuring the content of the computer register at the end of the quantum algorithm). From another standpoint, the notion that a computation process is condensed into a single physical interaction explains the fact that we perceive many things at the same time in the introspective “present” (the instant of the interaction in the classical case, the time interval spanned by backdated reduction in the quantum case).  相似文献   

13.
In this paper, I argue that the Shrapnel–Costa no-go theorem undermines the last remaining viability of the view that the fundamental ontology of quantum mechanics is essentially classical: that is, the view that physical reality is underpinned by objectively real, counterfactually definite, uniquely spatiotemporally defined, local, dynamical entities with determinate valued properties, and where typically ‘quantum’ behaviour emerges as a function of our own in-principle ignorance of such entities. Call this view Einstein–Bell realism. One can show that the causally symmetric local hidden variable approach to interpreting quantum theory is the most natural interpretation that follows from Einstein–Bell realism, where causal symmetry plays a significant role in circumventing the nonclassical consequences of the traditional no-go theorems. However, Shrapnel and Costa argue that exotic causal structures, such as causal symmetry, are incapable of explaining quantum behaviour as arising as a result of noncontextual ontological properties of the world. This is particularly worrying for Einstein–Bell realism and classical ontology. In the first instance, the obvious consequence of the theorem is a straightforward rejection of Einstein–Bell realism. However, more than this, I argue that, even where there looks to be a possibility of accounting for contextual ontic variables within a causally symmetric framework, the cost of such an account undermines a key advantage of causal symmetry: that accepting causal symmetry is more economical than rejecting a classical ontology. Either way, it looks like we should give up on classical ontology.  相似文献   

14.
The trace formulation of quantum mechanical expectations is derived in a classical deterministic setting by averaging over an assembly of states. Interference of probabilities is discussed and its usual Hilbert space formulation is questioned. Nevertheless, it is shown that the observable predictions of quantum statics remain unchanged in the framework developed here.  相似文献   

15.
Relying on some concepts introduced in a companion paper, we set foth in this article a formulation of quantum theory that yields the same experimental predictions as those obtained from von Neumann's formulation. Moreover, this is accomplished in such a manner as to obviate the need for observer intervention.  相似文献   

16.
This paper discusses a possible resolution of the nonobjectivity-nonlocality dilemma in quantum mechanics in the light of experimental tests of the Bell inequality for two entangled photons and a Bell-like inequality for a single neutron. My conclusion is that these experiments show that quantum mechanics is nonobjective: that is, the values of physical observables cannot be assigned to a system before measurement. Bell’s assumption of nonlocality has to be rejected as having no direct experimental confirmation, at least thus far. I also consider the relationships between nonobjectivity and contextuality. Specifically, I analyze the impact of the Kochen-Specker theorem on the problem of contextuality of quantum observables. I argue that, just as von Neumann’s “no-go” theorem, the Kochen-Specker theorem is based on assumptions that do not correspond to the real physical situation. Finally, I present a theory of measurement based on a classical, purely wave model (pre-quantum classical statistical field theory), a model that reproduces quantum probabilities. In this model continuous fields are transformed into discrete clicks of detectors. While this model is classical, it is nonobjective. In this case, nonobjectivity is the result of the dependence of experimental outcomes on the context of measurement, in accordance with Bohr’s view.  相似文献   

17.
I examine the question of how far experiments that look for the effects of superposition of macroscopically distinct states are relevant to the classic measurement paradox of quantum mechanics. Existing experiments on superconducting devices confirm the predictions of the quantum formalism extrapolated to the macroscopic level, and to that extent provide strong circumstantial evidence for its validity at this level, but do not directly test the principle of superposition of macrostates. A more ambitious experiment, not obviously infeasible with current technology, could provide a direct test between quantum mechanics and a whole class of theories embodying the postulate of realism at the macroscopic level.  相似文献   

18.
The Mechanism of Quantum Computation   总被引:1,自引:1,他引:0  
  相似文献   

19.
Nelson's stochastic formulation of quantum theory is briefly surveyed and put in relation to the classical stochastic formalisms. The approach is investigated comparatively with the Bohm-Vigier model of stochastic fluctuations. Parallels to the causal interpretation of de Broglie-Bohm are drawn.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号