首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
应用近红外光谱技术快速鉴别玉米杂交种纯度的研究   总被引:3,自引:0,他引:3  
采用近红外光谱分析技术结合定性偏最小二乘法对农大108玉米杂交种的纯度进行了鉴别研究,实验采用农大108杂交种子与母本178种子各100粒进行单粒光谱扫描(建模集与检验集比例为3:1),结果表明:透射孔直径为3 mm 时,所建模型平均鉴别率为99.82%,显著高于透射孔直径为4.5 mm 时所建模型的鉴别率90.96%;采用胚乳面一次光谱、胚面两次平均光谱、胚乳面两次平均光谱和四次平均光谱进行建模,其平均鉴别率筹异不显著,检验集平均鉴别率均达到99%左右,略高于胚面一次光谱;选择透射孔径3.0 mm,4 000~8 000 cm1 光谱范围,种子胚乳面单次光谱所建立的农大108玉米杂交种的种子纯度鉴定模型的建模集和检验集的鉴别率均达到100%.  相似文献   

2.
以收获年份不同、收获地点不同的112份乌拉尔甘草种子为材料,其硬实率分布范围为0.3%~99.3%,根据3:1的比例划分校正集和检验集,采用近红外光谱技术结合定量偏最小二乘法对其硬实率进行了分析。研究结果表明,光谱范围采用5 000~6 000 cm~(-1),主成分数为6时,校正集和检验集的决定系数分别为90.85%和91.51%,相关系数分别为0.953 2和0.957 9,平均绝对误差分别为7.73%和6.96%,标准差分别为9.98和9.57。采用该方法建模时,即使采用不同的建模样品,校正集和检验集的决定系数均在90%以上,校正标准差和预测标准差在10.00左右,平均绝对误差在7.90%左右。该研究旨在利用近红外光谱法提出乌拉尔甘草种子硬实率的快速检测方法,以促进硬实种子在生产上的利用。  相似文献   

3.
紫花苜蓿是我国北方重要的栽培牧草,由于其种子硬实率高达20%~80%,在播种时无法快速辨别硬实种子而影响其种用价值,对实际生产造成了直接影响。为研究出快速无损分选苜蓿硬实种子和非硬实种子的方法,选取不同产地、不同收获年份、不同品种的紫花苜蓿种子样品121份,同时经人工配比获得不同硬实比率的紫花苜蓿种子样品共31份,利用近红外光谱技术,采用偏最小二乘法,对其硬实率进行了分析,建立紫花苜蓿种子硬实率的近红外光谱分析模型,为紫花苜蓿硬实种子的快速检测和识别技术进行探索性研究。结果表明,最终获得的光谱模型建模相关系数(R2cal)为0.981 6,交叉检验标准误差(RMSECV)为5.32,相对标准误差(RPD)为3.58,模型的预测能力相对较好,能够应用于紫花苜蓿种子硬实率的估测,为种子硬实率的无损检测提供了一种新方法。模型的建立为研究出快速无损确定种子硬实特性方法提供技术指导,促进种子硬实特性的深入研究。  相似文献   

4.
高光谱技术结合特征波长筛选的牛肉品种多波段识别   总被引:1,自引:0,他引:1  
利用可见/近红外(400~1 000 nm)及近红外(900~1 700 nm)高光谱成像技术结合特征波长筛选方法对安格斯牛、力木赞牛、西门塔尔牛3个品种的牛肉进行鉴别研究,且测定肉样的色泽、嫩度、pH值以及水分、脂肪、蛋白质含量。根据不同波段光谱的特点,分别对原始光谱进行预处理,并利用SPA、IRF和IRF-SPA方法筛选特征波长,建立基于全波段及特征波长下的PLS-DA牛肉品种鉴别模型。结果显示:400~1 000 nm波段采用SNV-IRF-SPA-PLS-DA方法建立的模型最优,校正集与预测集准确率分别为98.56%和97.12%,900~1 700 nm波段采用SG-SPA-PLS-DA方法建立的模型准确率为94.09%和96.04%,说明不同波段高光谱对牛肉品种识别均有较好的效果;400~1 000 nm波段的识别准确率优于900~1 700 nm,说明3种牛肉在色泽纹理上的差异比成分含量显著。研究表明,利用高光谱成像技术结合特征波长筛选方法能够获得较好的牛肉品种鉴别效果。  相似文献   

5.
基于机器学习的玉米单倍体近红外光谱鉴别方法研究   总被引:1,自引:0,他引:1  
在玉米单倍体技术中,单倍体鉴别是非常重要的环节。该研究对大量玉米单倍体与杂合二倍体的近红外透射光谱进行分析,以期建立一套在生产上实用的单倍体鉴别模型。通过采集三组遗传背景不同的玉米单倍体与杂合二倍体籽粒光谱,进行不同机器学习算法对比,光谱预处理建模效果比较,以及分析数据集大小对模型构建的影响。对比所有单倍体与杂合二倍体的平均光谱,发现二者在光谱的吸收峰位置基本相同,但是单倍体的吸光度略高于杂合二倍体,尤其是在波长940~1 120 nm以及1 180~1 316 nm这两段谱区差异较大。在构建的几个模型中,采用偏最小二乘法和神经网络算法的模型单倍体鉴别准确率较高,分别为93.26%和95.42%。测试集验证的结果与模型准确率一致,表明两种算法适宜进行单倍体大规模筛选。利用偏最小二乘法模型比较了不同光谱预处理方法的模型效果,发现仅进行移动窗口平滑预处理原始光谱进行建模准确率最高。对不同大小数据集的建模效果对比发现,在一定范围内增大数据集有助于提高模型准确率。而且数据中单倍体所占比例较高时,单倍体预测召回率可达100%。此外,还根据籽粒颜色标记挑选出不易鉴别的单倍体和杂合二倍体,利用偏最小二乘法构建的机器学习模型预测准确率可达93.39%,显示出近红外鉴别单倍体的优势,即有可能在不依赖籽粒颜色的情况下实现准确鉴别。基于机器学习的近红外单倍体鉴别方法具有较高的准确率,而且该方法还能在后期数据增加的基础上不断优化,对其开展理论研究有望为自动化智能鉴别单倍体创造条件。  相似文献   

6.
基于高光谱技术的玉米种子可视化鉴别研究   总被引:2,自引:0,他引:2  
种子纯度是衡量种子品质的重要指标。提出一种基于近红外(874~1 734nm)高光谱技术实现玉米种子可视化鉴别的方法。采集4个品种共384个玉米种子样本的高光谱图像数据,随机选择288个样本作为建模集,剩余96个样本作为预测集。对玉米种子光谱曲线进行分析后,通过连续投影算法(SPA)选取7个特征波段作为输入,结合偏最小二乘法判别分析(PLS-DA)模型,对预测集进行预测,获得较好的分类效果,其中R_C=0.917 7,RMSECV=0.444 2;R_(CV)=0.911 5,RMSECV=0.459 9,建模集和预测集的总体鉴别率分别为78.5%和70.8%。通过图像处理技术提取高光谱图像中每个玉米颗粒的平均光谱数据,输入建立的SPA-PLS-DA模型,在计算生成的鉴别图中以不同颜色标识不同类别,实现了混杂玉米种子样本的可视化鉴别。对3份不同组成的混杂种子样本进行鉴别,达到了较好的可视化效果。结果表明,通过可视化鉴别技术,可以直观方便地观察混杂种子样本中不同品种种子的分布和数量,为农业生产中种子的纯度鉴别和筛选提供了帮助。  相似文献   

7.
近红外光谱技术的小麦条锈病严重度分级识别   总被引:3,自引:0,他引:3  
小麦条锈病是世界上影响小麦安全生产的一种重要病害。实现小麦条锈病不同严重度叶片快速、准确的分级识别,对于条锈病监测、预测预报和防治措施的制定具有重要意义。通过人工接种获得条锈病不同发病程度小麦叶片,选取8个不同严重度级别(1%,5%,10%,20%,40%,60%,80%和100%)叶片各30片和健康小麦叶片30片,利用近红外光谱技术分别获取光谱信息,共获得270条近红外光谱曲线,依据小麦叶片条锈病发病程度的不同,将其分为9个类别。从每个类别中随机选择7~8条光谱曲线作为测试集,共计67条,将剩余的203条光谱曲线作为训练集。利用定性偏最小二乘法建立小麦条锈病不同严重度叶片的定性识别模型。研究分析了不同光谱预处理方法、建模比(训练集:测试集)和建模谱区对所建模型识别效果的影响。结果表明,在4 000~9 000cm-1谱区范围内,原始近红外光谱数据经中心化预处理后,建模比为3∶1时,采用内部交叉验证法建模,训练集和测试集的总体识别准确率分别为95.57%和97.01%,所建模型识别效果较好。表明基于近红外光谱技术进行小麦条锈病叶片严重度分级识别是可行的,为小麦条锈病的监测和评估提供了一种新方法。  相似文献   

8.
提出了一种采用近红外光谱技术结合人工神经网络对玉米品种进行鉴别的方法.在3 800~10 000cm-1(波长1 000~2 632 nm)范围内采集四种玉米单粒完整籽粒的近红外漫反射光谱,经Savitky-Golay平滑和多重散射校正预处理后,对数据进行主成分分析,再结合人工神经网络技术进行品种鉴别.主成分分析表明,前8个主成分的累积贡献率达到99.602%.以前8个主成分作为网络输入,品种类型作为输出,建立三层LMBP神经网络模型.每个品种各取30粒共120个样本用于建模,10粒共40个样本用于预测.模型对建模集120个样本鉴别率为100%,对预测集40个样本的鉴别率为95%.实验结果说明该方法能快速无损地鉴别玉米品种,为玉米的品种鉴别提供了一种新方法.  相似文献   

9.
近红外光谱分析技术在茶叶鉴别中的应用研究   总被引:34,自引:6,他引:28  
茶叶快速准确鉴别方法研究是当前茶叶行业亟待解决的一个重要课题.该研究采用近红外光谱结合主成分-马氏距离模式识别方法鉴别了龙井、碧螺春、毛峰和铁观音4种中国名茶.研究结果表明,在6 500~5 300cm-1波数范围内的光谱,通过MSC预处理方法,用8个主成分建立的模型最好,模型对校正集样本和预测集样本的鉴别率分别达到98.75%和95%.该研究为快速准确鉴别茶叶提供了一种新思路.  相似文献   

10.
太平猴魁茶因其特有的“喉韵”深受广大消费者喜爱,不同产地太平猴魁茶市场价格相差较大,如何实现产地精准鉴别是目前促进绿茶产业发展的关键因素。依赖于人工经验的感官评审方法主观性强、稳定性差,无法应用于实际生产检测过程。作为目前主要的检测分析方法,化学分析方法周期长、检测成本高,而且目前没有用于茶叶产地鉴别的统一标准。近红外光谱(NIR)作为一种无损检测分析方法,具有快速、非破坏性、无污染等特点,但是不同产地太平猴魁茶主要内含成分及其含量基本相同,不同产地样本光谱特征峰分布相似,导致常规分析方法无法有效选择特征变量。卷积神经网络(CNN)作为经典深度学习网络模型之一,具有强特征提取和模型表达能力。采用太平猴魁茶产地光谱特征分析,利用一维卷积神经网络模型(1-D CNN)提取太平猴魁茶NIR特征,提出一种基于1-D CNN和NIR的太平猴魁茶产地鉴别分析方法。试验以6个不同产地共120个样本为研究对象,分析10 000~4 000 cm-1范围内的光谱信息;将样本随机划分为训练集(84,占70%)和测试集(36,占30%),分别讨论不同间隔采样、网络结构、卷积核大小及激活函数对产地鉴别结果的影响,并引入Dropout方法对比分析模型过拟合现象;最终建立一个具有9层结构的1-D CNN模型。蒙特卡罗试验结果表明,相比于基于原始光谱数据(40.57%,7.06)和PCA方法(31.93%,6.96)的太平猴魁茶产地预测模型准确率和标准差,基于1-D CNN的太平猴魁茶产地鉴别模型预测精度和稳定性更高,其测试集预测准确率平均值和标准差分别为97.73%和3.47。因此,1-D CNN可有效提取太平猴魁茶不同产地NIR特征,提高太平猴魁茶产地鉴别精度,为太平猴魁茶精准产地鉴别及溯源分析提供参考。  相似文献   

11.
优质棉种是全面推广棉花精量播种技术的基础。采用近红外高光谱成像技术实现微破损棉种可视化识别,为棉种精选设备的研制奠定理论基础。以未破损和微破损两类棉种各540粒作为样本(其中405粒作为建模集,135粒棉种作为预测集),分批采集874~1 734 nm范围的样本高光谱图像,提取光谱数据并去除首尾两端明显噪声保留955~1 659 nm范围内光谱为棉种样本的光谱。首先使用Kennard-Stone(KS)算法进行样本划分,并通过平滑算法Savitsky-Golay(SG)对光谱进行预处理。采用二阶导数光谱(2nd spectra)方法、连续投影算法(SPA)和主成分载荷(PCA-loading)方法分别选取10,14和11个特征波长。基于全部光谱数据和特征波长建立偏最小二乘判别分析(PLS-DA)模型、K最邻近(KNN)模型和支持向量机(SVM)模型,SPA-PLS-DA模型取得了较好的结果,建模集和预测集的鉴别率分别为91.50%和90.33%。基于SPA-PLS-DA模型分别对未破损样本和微破损样本及其混合样本图像进行识别,取得了较好的识别结果,微破损棉种的识别率达90%以上。结果表明,结合近红外高光谱成像和图像处理技术,能够实现微破损棉种的可视化识别。  相似文献   

12.
杂交稻种宜香725纯度的可见-近红外反射光谱鉴定   总被引:1,自引:0,他引:1  
提出了一种基于可见-近红外光谱技术快速、无损鉴定杂交稻种纯度的新方法.以FieldSpec(R)3地物光谱仪采集纯度在90%~99%范围内的杂交稻种(宜香725)光谱数据90份,随机分成校正集(75份)和检验集(15份).根据其在380~2 400 nm的反射光谱,以偏最小二乘算法(PLS)建立了回归模型,并比较了不同光谱预处理方法对模型的影响.分析表明采用一阶导数结合标准归一化处理能最有效地提取光谱信息,此时PLS模型校正集决定系数与检验集决定系数分别为0.988 4与0.922 7,校正标准误差(SEC)与预测标准误差(SEP)分别为0.002 5与0.006 6.将经一阶导数结合标准归一化处理后的光谱进行PCA降维,以前20个主成份(含原始光谱86.09%的特征信息)为输入变量,建立杂交稻种纯度鉴定的BP-ANN模型.分析表明BP-ANN模型校正集决定系数与检验集决定系数分别为0.995 2与0.936 9,SEC与SEP分别为0.001 7与0.006 1,具有比PLS模型更高的精度.结果表明以可见-近红外技术进行杂交稻种纯度的快速、无损鉴定是可行的,且PCA结合BP-ANN是一种优选方法.  相似文献   

13.
Huang YY  Zhu LW  Ma HX  Li JH  Sun BQ  Sun Q 《光谱学与光谱分析》2011,31(10):2706-2710
利用近红外光谱分析技术结合定量偏最小二乘法对农大108玉米的纯度进行了定量测定,首先通过在农大108杂交种子加入不同量的母本178种子,获得纯度60%~100%范围内的样本123份,然后测定粉碎后样本的光谱,根据2:1的比例划分建模集和检验集。结果表明:6 000~10 000 cm-1为适宜的建模光谱范围,主成分为8时,建模集内部交叉验证的决定系数达96.61%、校正标准差(SEC)2.15%,平均相对误差(RSD)2.04%;检验集的决定系数达到97.67%,校正标准差(SEP)1.78%,平均相对误差(RSD)1.94%。采用该方法建模时,采用不同比例的建模样品和检验样品,建模集平均决定系数为96.21%,校正标准差2.29%,平均相对误差为2.81%。检验集的平均决定系数为95.75%,预测标准差2.23%,平均相对误差为2.73%,进一步证明模型的稳定性。  相似文献   

14.
开展种子品种的识别研究是保证种子质量的重要手段。利用高光谱图像技术融合图像特征信息对脱绒棉种的品种进行判别分析。采集4个品种共240粒脱绒棉种样本的高光谱图像数据(400~1 000 nm),提取样本的光谱信息及长、宽、面积、圆形度、等12个形态特征。采用连续投影算法(SPA)选出11个特征波段作为输入结合偏最小二乘判别分析法(PLS-DA)、软独立模式识别法(SIMCA)、最邻近节点算法(KNN)、主成分分析结合线性判别(PCA-LDA)及二次判别(PCA-QDA)进行建模分析,得出PLS-DA建模集和预测集的总体识别率分别为93%和90%。利用图像信息进行建模分析,模型整体的识别率均不高,说明单独使用高光谱图像的形态特征进行分类效果不佳。将特征波段的光谱和形态特征信息进行融合作为输入,建立基于PLS-DA,SIMCA,KNN,PCA-LDA及PCA-QDA的信息融合模型,其精度均比基于光谱或形态信息模型高,其中PLS-DA模型识别效果最好,建模集和预测集总体识别率分别为98%和97%。表明融合高光谱图像的光谱与图像信息可以在少量波段情况下有效的提高脱绒棉种品种的分类检测精度。  相似文献   

15.
棉花精量播种技术目前已经在新疆兵团全面推广,该技术能精确实现一穴一粒的农艺技术指标,但是也对高质量棉种的筛选提出了更高的要求。为了避免播种往年活力不足的棉种而导致发芽率降低的问题,结合机器学习和近红外(NIR)高光谱成像技术(HSI)进行棉种年份精确鉴别,实现棉种的快速无损筛选。采集2016年—2019年近四年外观无明显差异的棉种各360粒,共1 440粒棉种(按照3∶1∶1划分训练集、验证集和测试集)作为样本,按照每批60粒采集915~1 698 nm范围的棉种高光谱图像,去除首尾两端噪声大的光谱,保留1 002~1 602 nm范围的光谱为原始数据。利用Savitzky-Golay(SG)平滑算法对光谱进行预处理,采用主成分载荷方法(PCA-loading)选取13个特征波段,基于全部光谱数据和特征波段(±10 nm)数据建立逻辑回归(LR)、偏最小二乘判别分析(PLS-DA)、支持向量机(SVM)、循环神经网络(RNN)、长短记忆网络(LSTM)和卷积神经网络(CNN)六种分类模型。使用全光谱数据建模时,六种分类模型在测试集上的鉴别准确率分别为96.27%,98.98%,99.32%,96.95%,97.63%和100%,其中CNN和SVM模型取得了较好的结果;使用特征光谱数据建模时,六种分类模型在测试集上的鉴别精度分别为93.56%,97.29%,98.30%,95.25%,94.24%和99.66%,其中CNN和SVM模型仍有较好的分类结果。结果表明,使用全光谱数据建模时,六种分类模型都可以实现较高精度的棉种年份鉴别,使用特征光谱数据建模时CNN和SVM模型的鉴别精度仍可达到98%;其中深度学习方法优于传统机器学习方法,但是传统机器学习方法仍能保持较好的鉴别准确率。因此,结合近红外高光谱成像技术和机器学习方法能够实现棉种年份的高精度鉴别,为棉花精量播种过程中的优质棉种选种技术提供理论依据和方法。  相似文献   

16.
高丹草中粗蛋白质以及碳水化合物的含量丰富,适合青贮处理。优质的高丹草种子是发展畜牧业十分重要的前提,发芽率是检验种子质量最常规的指标之一,播前种子发芽率检测与筛选十分必要。现阶段采用发芽试验法进行种子发芽率的检测,周期长、成本高。基于此,提出利用近红外光谱对高丹草种子进行发芽率的快速、无损检测。选择适量的高丹草种子样品,采集近红外漫反射光谱,进行一阶导和二阶导预处理以及对比分析R2c,R2p,RESEC和RMSEP。采用支持向量机(SVM)建模,使用MATLAB中调用的LIBSVM软件包来实现SVM训练和检测过程,以检测不同发芽率的高丹草种子。对来自不同省份的100组高丹草种子先剔除种子内的杂物、破损以及不能满足试验条件的种子后,用人工气候培养箱进行种子发芽试验,获得100组种子样本的发芽率,其发芽率分布在41%~64%的范围。采用美国Unity Scientific 2600XT近红外光谱仪对样本进行光谱扫描。随机分成校正集70份和检验集30份。分别采用一阶导和二阶导进行了高丹草种子光谱的预处理,将预处理之后的数据采用支持向量机的方法建模,并对其参数进行了分析和讨论。结果表明,近红外光谱预测模型训练集相关系数(R2c)和测试集相关系数(R2p)分别为0.94和0.92,校正均方根误差(RMSEC)、预测均方根误差(RMSEP)分别为0.21和0.25,两个产地的高丹草种子数据采用一阶导预处理时模型最优。支持向量机的方法建模采用Rbf核函数,当支持向量机惩罚因子c=2 896.309 4和核函数g=0.5时,测试集种子发芽率的检测准确率为96.666 7%(29/30)。该模型预测种子发芽率是可行的,可以作为初步检测高丹草种子发芽率快速无损检测的手段之一,能够有效的促进种子生产。  相似文献   

17.
甜瓜的品种多样,富含多种营养成分,甜瓜种子品种不纯将对甜瓜生产造成一定危害,研究采用种子的叶绿素荧光光谱结合反射光谱的分析方法鉴别甜瓜种子品种,以甜瓜品种“一特白”、“一特金”、“京蜜7号”、“京蜜11号”、“伊丽莎白”为研究对象。构建了甜瓜种子品种鉴别光谱系统,包括激发光源单元、光谱数据采集单元和数据处理单元,使用该系统获取不同品种甜瓜种子的光谱数据。对光谱数据分别进行一阶导数(first derivative, FD),Savitzky-Golay(SG) 平滑,FD结合SG平滑预处理。采用主成分分析(principal component analysis, PCA)方法降低光谱数据的维数,提取主成分。使用两种不同分组方法将样品按照3∶1的比例分为训练集和验证集,并分别采用Fisher判别和Bayes判别分析方法建立甜瓜种子品种的判别模型。本文比较了仅使用叶绿素荧光光谱与使用叶绿素荧光光谱结合反射光谱建立判别模型的判别结果,结果显示,使用叶绿素荧光光谱结合反射光谱建模的判别结果优于仅使用叶绿素荧光光谱建模的判别结果,Fisher判别分析和Bayes判别分析的验证集样品品种的判别正确率均达到98.0%。研究结果表明,采用叶绿素荧光光谱结合反射光谱鉴别甜瓜种子品种具有可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号