首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study analytically and by molecular dynamics simulations the ground state configuration of a system of magnetic dipoles fixed on a two-dimensional lattice. We find different phases, in close agreement with previous results. Building on this result and on the minimum energy requirement we determine the equilibrium lattice configuration, the magnetic order (ferromagnetic versus antiferromagnetic), and the magnetic polarization direction of a system of charged mesoscopic particles with magnetic dipole moments, in the domain where the strong electrostatic coupling leads to a crystalline ground state. Orders of magnitudes of the parameters of the system relevant to possible future dusty plasma experiments are discussed.  相似文献   

2.
3.
In this paper we construct a charged thin-shell gravastar model within the context of noncommutative geometry. To do so, we choose the interior of the nonsingular de Sitter spacetime with an exterior charged noncommutative solution by cut-and-paste technique and apply the generalized junction conditions. We then investigate the stability of a charged thin-shell gravastar under linear perturbations around the static equilibrium solutions as well as the thermodynamical stability of the charged gravastar. We find the stability regions, by choosing appropriate parameter values, located sufficiently close to the event horizon.  相似文献   

4.
In this paper,we investigate the stability of quark stars with four different types of inner matter configurations;isotropic,charged isotropic,anisotropic and charged anisotropic by using the concept of cracking.For this purpose,we have applied local density perturbations technique to the hydrostatic equilibrium equation as well as on physical parameters involved in the model.We conclude that quark stars become potentially unstable when inner matter configuration is changed and electromagnetic field is applied.  相似文献   

5.
Strongly-interacting bosons in two-dimensional harmonic traps are described through breaking of rotational symmetry at the Hartree-Fock level and subsequent symmetry restoration via projection techniques, thus incorporating correlations beyond the Gross-Pitaevskii (GP) solution. The bosons localize and form polygonal-ringlike crystalline patterns, both for a repulsive contact potential and a Coulomb interaction, as revealed via conditional-probability-distribution analysis. For neutral bosons, the total energy of the crystalline phase saturates in contrast to the GP solution, and its spatial extent becomes smaller than that of the GP condensate. For charged bosons, the total energy and dimensions approach the values of classical pointlike charges in their equilibrium configuration.  相似文献   

6.
Structural and dynamical properties of hydrogen in crystalline and amorphous silicon are analyzed by ab initio molecular dynamics simulations. In the crystalline case we focus mainly on the diffusion process of an isolated positively charged hydrogen impurity at high temperature, finding important dynamical effects. In the amorphous case we analyze the local order and the dynamical properties corresponding to an atomic hydrogen concentration of 11%, typical of a device quality material. We find that hydrogen atoms form monohydride complexes and show interesting clustering effects. In both crystalline and amorphous cases, our results are in good agreement with available experimental data and give unique insight into the microscopic details of hydrogen incorporation in silicon.  相似文献   

7.
We obtain a tensor form of the virial theorem for a relativistic charged thermodynamic perfect fluid. As a particular application, we consider the equilibrium of a spherically symmetric charged dust cloud.  相似文献   

8.
In this paper, we explore static spherically symmetric charged wormhole solutions in extended teleparallel gravity taking power-law f(T) models. We consider noncommutative geometry under Lorentzian distribution. In order to obtain matter components, we develop field equations using effective energy-momentum tensor for non-diagonal tetrad. We explore solutions by considering various viable power-law f(T) models, which also include teleparallel gravity case. The violation of energy conditions obtain by exotic matter to form wormhole solutions in teleparallel case while, physical acceptable wormhole solutions exist for charged noncommutative wormhole solutions for some cases of power-law models. The effective energy-momentum tensor and charge are responsible for the violation of the energy conditions. Also, we check the equilibrium condition for these solutions. The equilibrium condition meets for the teleparallel case and some power-law solutions while remaining solutions are either in less equilibrium or in disequilibrium situation.  相似文献   

9.
We study analytically the structural properties of a system with a short-range attraction and a competing long-range screened repulsion. This model contains the essential features of the effective interaction potential among charged colloids in polymeric solutions and provides novel insights on the equilibrium phase diagram of these systems. Within the self-consistent Hartree approximation and by using a replica approach, we show that varying the parameters of the repulsive potential and the temperature yields a phase coexistence, a lamellar, and a glassy phase. Our results strongly suggest that the cluster phase observed in charged colloids might be the signature of an underlying equilibrium lamellar phase, hidden on experimental time scales.  相似文献   

10.
We report the equilibrium self-assembly of binary crystals of oppositely charged colloidal microspheres at high density. By varying the magnitude of the charge on near equal-sized spheres we show that the structure of the binary crystal may be switched between face-centered cubic, cesium chloride, and sodium chloride. We interpret these transformations in terms of a competition between entropic and Coulombic forces.  相似文献   

11.
We consider an infinite Hamiltonian system in one space dimension, given by a charged particle subjected to a constant electric field and interacting with an infinitely extended system of particles. We discuss conditions on the particle/medium interaction which are necessary for the charged particle to reach a finite limiting velocity. We assume that the background system is initially in an equilibrium Gibbs state and we prove that for bounded interactions the average velocity of the charged particle increases linearly in time. This statement holds for any positive intensity of the electric field, thus contradicting Ohms law.Work partially supported by the GNFM-INDAM and the Italian Ministry of the University.  相似文献   

12.
In Newtonian gravitational theory a system of point charged particles can be arranged in static equilibrium under their mutual gravitational and electrostatic forces provided that for each particle the charge,e, is related to the mass,m, bye=G 1/2 m. Corresponding static solutions of the coupled source free Einstein-Maxwell equations have been given by Majumdar and Papapetrou. We show that these solutions can be analytically extended and interpreted as a system of charged black holes in equilibrium under their gravitational and electrical forces.We also analyse some of stationary solutions of the Einstein-Maxwell equations discovered by Israel and Wilson. If space is asymptotically Euclidean we find that all of these solutions have naked singularities.Alfred P. Sloan Research Fellow, supported in part by the National Science Foundation.  相似文献   

13.
The motion and equilibrium distribution of water molecules adsorbed inside neutral and negatively charged singlewalled carbon nanotubes (SWNTs) have been studied using molecular dynamics simulations (MDSs) at room temperature based on CHARMM (Chemistry at HARvard Molecular Mechanics) potential parameters. We find that water molecules have a conspicuous electropism phenomenon and regular tubule patterns inside and outside the charged tube wall. The analyses of the motion behaviour of water molecules in the radial and axial directions show that by charging the SWNT, the adsorption efficiency is greatly enhanced, and the electric field produced by the charged SWNTs prevents water molecules from flowing out of the nanotube. However, water molecules can travel through the neutral SWNT in a fluctuating manner. This indicates that by electrically charging and uncharging the SWNTs, one can control the adsorption and transport behaviour of polar molecules in SWNTs for using as a stable storage medium or long transport channels. The transport velocity can be tailored by changing the charge on the SWNTs, which may have a further application as modulatable transport channels.  相似文献   

14.
In this paper, we present the structure and the dynamics of highly charged heavy ions studied through dielectronic recombination (DR) observations performed with the Tokyo electron beam ion trap. By measuring the energy dependence of the ion abundance ratio in the trap at equilibrium, we have observed DR processes for open shell systems very clearly. Remarkable relativistic effects due to the generalized Breit interaction have been clearly shown in DR for highly charged heavy ions. We also present the first result for the coincidence measurement of two photons emitted from a single DR event.  相似文献   

15.
We have calculated the intensity of radiation of a relativistic charged particle moving in a crystalline medium, taking into account the interaction of the charge with the crystal as well as with the radiation. Various modifications to the usual Cerenkov radiation are discussed and under certain conditions enhancement occurs.  相似文献   

16.
17.
Several attempts have been already carried out in order to tether charged chains by an end at a free fluctuating surface. We review here most of these attempts and focus on how close the physics of charged brushes can be investigated by such an approach. We first describe results about films of charged-neutral diblock copolymers spread at the surface of water. Results can be mostly rationalized in terms of charged brushes although additional structurations and fluctuations of the interface can be observed. The latter deformations are also observed when adsorbed layers of charged-neutral diblock copolymers are considered. At last, we examine how free suspended films of charged-neutral diblock copolymers can be viewed as two opposing charged brushes, both in terms of thickness and pressure. Received 9 May 2000  相似文献   

18.
Long ranged electrostatic interactions are time consuming to calculate in molecular dynamics and Monte Carlo simulations. We introduce an algorithmic framework for simulating charged particles which modifies the dynamics so as to allow equilibration using a local Hamiltonian. The method introduces an auxiliary field with constrained dynamics so that the equilibrium distribution is determined by the Coulomb interaction. We demonstrate the efficiency of the method by simulating a simple, charged lattice gas.  相似文献   

19.
It has recently been pointed out that, under certain conditions, the energy of particles accelerated by black holes in the center-of-mass frame can become arbitrarily high. In this paper, we study the collision of two particles in the case of four-dimensional charged nonrotating, extremal charged rotating and near-extremal charged rotating Kaluza-Klein black holes as well as the naked singularity case in Einstein-Maxwell-dilaton theory. We find that the center-of-mass energy for a pair of colliding particles is unlimited at the horizon of charged nonrotating Kaluza-Klein black holes, extremal charged rotating Kaluza-Klein black holes and in the naked singularity case.  相似文献   

20.
A novel and flexible experiment is reported for investigation of the non-equilibrium melting behaviour of model crystals made from charged colloidal spheres. In a slit geometry, polycrystalline material formed in a low salt region is driven by hydrostatic pressure up an evolving gradient in salt concentration and melts at large salt concentration. Depending on particle and initial salt concentration, driving velocity and the local salt concentration, complex morphologic evolution is observed. Crystal–melt interface positions and the melting velocity are obtained quantitatively from time-resolved Bragg and polarisation microscopic measurements. A simple theoretical model predicts the interface to first advance, then for balanced drift and melting velocities to become stationary at a salt concentration larger than the equilibrium melting concentration. It also describes the relaxation of the interface to its equilibrium position in a stationary gradient after stopping the drive in different manners. The influence of the gradient strength on the resulting interface morphology and a shear-induced morphologic transition from polycrystalline to oriented single crystalline material before melting are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号