首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
阎世英  朱正和 《中国物理》2004,13(12):2053-2057
Density functional method (DFT) (B3p86) of Gaussian98 has been used to optimize the structure of the Tc_2 molecule. The result shows that the ground state for Tc_2 molecule is an 11-multiple state and its electronic configuration is {}^{11}Σ_g^-, which shows the spin polarization effect of Tc_2 molecule of a transition metal element for the first time. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions of higher energy states. So, that the ground state for Tc_2 molecule is an 11-multiple state is indicative of the spin polarization effect of Tc_2 molecule of a transition metal element: that is, there exist 10 parallel spin electrons. The non-conjugated electron is greatest in number. These electrons occupy different spacious tracks, so that the energy of Tc_2 molecule is minimized. It can be concluded that the effect of parallel spin of the Tc_2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell--Sorbie potential functions with the parameters for the ground state {}^{11}Σ_g^- and other states of Tc_2 molecule are derived. Dissociation energy D_e for the ground state of T_{c2} molecule is 2.266eV, equilibrium bond length R_e is 0.2841nm, vibration frequency ω_e is 178.52cm^{-1}. Its force constants f_2, f_3, and f_4 are 0.9200aJ·nm^{-2}, --3.5700aJ·nm^{-3}, 11.2748aJ·nm^{-4} respectively. The other spectroscopic data for the ground state of Tc_2 molecule ω_eχ_e, B_e, α_e are 0.5523cm^{-1}, 0.0426cm^{-1}, 1.6331×10^{-4}cm^{-1} respectively.  相似文献   

2.
阎世英  朱正和 《中国物理》2006,15(7):1517-1521
This paper uses the density functional theory (DFT)(B3p86) of Gaussian03 to optimize the structure of Fe2 molecule. The result shows that the ground state for Fe2 molecule is a 9-multiple state, which shows spin polarization effect of Fe2 molecule of transition metal elements for the first time. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions with higher energy states. So, that the ground state for Fe2 molecule is a 9-multiple state is indicative of the spin polarization effect of Fe2 molecule of transition metal elements. That is, there exist 8 parallel spin electrons. The non-conjugated electron is greatest in number. These electrons occupy different spacious tracks, so that the energy of the Fe2 molecule is minimized. It can be concluded that the effect of parallel spin of the Fe2 molecule is laFger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell Sorbie potential functions with the parameters for the ground state and other states of Fe2 molecule are derived. Dissociation energy De for the ground state of Fe2 molecule is 2.8586ev, equilibrium bond length Re is 0.2124nm, vibration frequency we is 336.38 cm^-1. Its force constants f2, f3, and f4 are 1.8615aJ.nm^-2, -8.6704aJ.nm^-3, 29.1676aj.nm^-4 respectively. The other spectroscopic data for the ground state of Fe2 molecule weXe, Be, αe are 1.5461 cm^-1, 0.1339cm^-1, 7.3428× 10^-4 cm^-1 respectively.  相似文献   

3.
Spin polarization effect for Mn2 molecule   总被引:2,自引:0,他引:2       下载免费PDF全文
阎世英  徐国亮 《中国物理》2007,16(3):686-691
The density functional theory method (DFT) (b3p86) of Gaussian 03 has been used to optimize the structure of the Mn2 molecule. The result shows that the ground state of the Mn2 molecule is an 11-multiple state, indicating a spin polarization effect in the Mn2 molecule, a transition metal element molecule. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions of higher-energy states. So the ground state for Mn2 molecule being of an 11-multiple state is the indicative of spin polarization effect of the Mn2 molecule among those in the transition metal elements: that is, there are 10 parallel spin electrons in a Mn2 molecule. The number of non-conjugated electrons is the greatest. These electrons occupy different spacious orbitals so that the energy of the Mn2 molecule is minimized. It can be concluded that the effect of parallel spin in the Mn2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters for the ground state and other states of the Mn2 molecule are derived. The dissociation energy De for the ground state of the Mn2 molecule is 1.4477 eV, equilibrium bond length Re is 0.2506 nm, vibration frequency ωe is 211.51 cm^-1. Its force constants f2, f3, and f4 are 0.7240 aJ·nm-2, -3.35574 aJ·nm^-3, 11.4813 aJ·nm^-4 respectively. The other spectroscopic data for the ground state of the Mn2 molecule ωeχe, Be, αe are 1.5301 cm^-1, 0.0978 cm^-1, 7.7825×10^-4 cm^-1 respectively.  相似文献   

4.
阎世英 《中国物理 B》2008,17(8):2925-2931
Density functional theory (DFT) (B3P86) of Gaussian 03 has been used to optimize the structure of the Cr2 molecule, a transition metal element molecule. The result shows that the ground state for the Cr2 molecule is a 13- multiple state, indicating that there exists a spin polarization effect in the Cr2 molecule. Meanwhile, we have not found any spin pollution because the wave function of the ground state does not mingle with wave functions of higher-energy states. So the ground state for Cr2 molecule being a 13-multiple state is indicative of spin polarization effect of the Cr2 molecule among transition metal elements, that is, there are 12 parallel spin electrons in the Cr2 molecule. The number of non-conjugated electrons is greatest. These electrons occupy different spatial orbitals so that the energy of the Cr2 molecule is minimized. It can be concluded that the effect of parallel spin in the Cr2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell Sorbie potential functions with the parameters for the ground state and other states of the Cr2 molecule are derived. The dissociation energy De for the ground state of the Cr2 molecule is 0.1034eV, equilibrium bond length Re is 0.3396 nm, and vibration frequency we is 73.81cm^-1. Its force constants f2, f3 and f4 are 0.0835, -0.2831 and 0.3535 aJ. nm^-4 respectively. The other spectroscopic data for the ground state of the Cr2 molecule ωeχe, Be and αe are 1.2105, 0.0562 and 7.2938 x 10^-4cm^-1 respectively.  相似文献   

5.
Density functional Theory (DFT) (B3p86) of Gaussian03 has been used to optimize the structure of Os2 molecule. The result shows that the ground state for Os2 molecule is 9-multiple state and its electronic configuration is ^9∑^+g, which shows spin polarization effect of Os2 molecule of transition metal elements for the first time. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions with higher energy states. So, the fact that the ground state for Os2 molecule is a 9-multiple state is indicative of spin polarization effect of Os2 molecule of transition metal elements. That is, there exist 8 parallel spin electrons. The non-conjugated electron is greatest in number. These electrons occupy different spacious tracks, so that the energy of Os2 molecule is minimized. It can be concluded that the effect of parallel spin of Os2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters for the ground state ^9∑^+g and other states of Os2 molecule are derived. Dissociation energy De for the ground state of Os2 molecule is 3.3971eV, equilibrium bond length Re is 0.2403nm, vibration frequency ωe is 235.32cm^-1. Its force constants f2, f3, and f4 are 3.1032×10^2aJ·nm^-2, -14.3425×10^3aJ·nm^-3 and 50.5792×10^4aJ·nm^-4 respectively. The other spectroscopic data for the ground state of Os2 molecule ωexe, Be and ae are 0.4277cm^- 1, 0.0307cm^- 1 and 0.6491 × 10^-4cm^-1 respectively.  相似文献   

6.
The possible stable geometrical configurations and the relative stabilities of the lowest-lying isomers of copper-doped gold clusters,Au n Cu (n=1-7),are investigated using the density functional theory.Several low-lying isomers are determined.The results indicate that the ground-state Au n Cu clusters have planar structures for n=1-7.The stability trend of the Au n Cu clusters (n=1-7),shows that odd-numbered Au n Cu clusters are more stable than the neighbouring even-numbered ones,thereby indicating the Au 5 Cu clusters are magic cluster with high chemical stability.  相似文献   

7.
阎世英  朱正和 《中国物理 B》2008,17(12):4498-4503
The density functional theory (DFT) method (b3p86) of Gaussian 03 is used to optimize the structure of the Ni2 molecule. The result shows that the ground state for the Ni2 molecule is a 5-multiple state, symbolizing a spin polarization effect existing in the Ni2 molecule, a transition metal molecule, but no spin pollution is found because the wavefunction of the ground state does not mingle with wavefunctions of higher-energy states. So the ground state for Ni2 molecule, which is a 5-multiple state, is indicative of spin polarization effect of the Ni2 molecule, that is, there exist 4 parallel spin electrons in Ni2 molecule. The number of non-conjugated electrons is greatest. These electrons occupy different spatial orbitals so that the energy of the Ni2 molecule is minimized. It can be concluded that the effect of parallel spin in the Ni2 molecule is larger than that of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters of the ground state and other states of the Ni2 molecule are derived. The dissociation energy De for the ground state of the Ni2 molecule is 1.835 eV, equilibrium bond length Re is 0.2243 nm, vibration frequency we is 262.35 cm^-1. Its force constants f2, f3 and f4 are 1.1901 aJ.nm^-2, -5.8723 aJ.nm^-3, and 21.2505 aJ.nm^-4 respectively. The other spectroscopic data for the ground state of the Ni2 molecule ωeχe, Be and αe are 1.6315cm 2, 0.1141 cm^-1, and 8.0145× 10^-4 cm^-1 respectively.  相似文献   

8.
谢安东 《中国物理》2006,15(2):324-328
Density functional theory (DFT) (B3p86) has been used to optimize the structure of the molecule Ta2. The result shows that the ground state of molecule Ta2 is a 7-multiple state and its electronic configuration is ^7∑u^+, which shows the spin polarization effect for molecule Ta2 of transition metal elements for the first time. Meanwhile, spin pollution has not been found because the wavefunction of the ground state does not mix with those of higher states. So, the fact that the ground state of molecule Ta2 is a 7-multiple state indicates a spin polarization effect of molecule Ta2 of the transition metal elements, i.e. there exist 6 parallel spin electrons and the non-conjugated electrons are greatest in number. These electrons occupy different space orbitals so that the energy of molecule Ta2 is minimized. It can be concluded that the effect of parallel spin of the molecule Ta2 is larger than the effect of the conjugated molecule, which is obviously related to the effect of d-electron delocalization. In addition, the Murrell-Sorbie potential functions with parameters for the ground state ^7∑u^+ and other states of the molecule Ta2 are derived. The dissociation energy De, equilibrium bond length Re and vibration frequency we for the ground state of molecule Ta2 are 4.5513eV, 0.2433nm and 173.06cm^-1, respectively. Its force constants f2, f3 and f4 are 1.5965×10^2aJ.nm^-2, -6.4722×10^3aJ·nm^-3 and 29.4851×10^4aJ·nm^-4, respectively. Other spectroscopic data we xe, Be and αe for the ground state of Ta2 are 0.2078cm^-1, 0.0315 cm^-1 and 0.7858×10^-4 cm^-1, respectively.  相似文献   

9.
We construct a family of solutions of the holographic insulator/superconductor phase transitions with the excited states in the AdS soliton background by using both the numerical and analytical methods. The interesting point is that the improved SturmLiouville method can not only analytically investigate the properties of the phase transition with the excited states, but also the distributions of the condensed fields in the vicinity of the critical point. We observe that, regardless of the type of the holographic model, the excited state has a higher critical chemical potential than the corresponding ground state, and the difference of the dimensionless critical chemical potential between the consecutive states is around 2.4, which is different from the finding of the metal/superconductor phase transition in the Ad S black hole background. Furthermore, near the critical point, we find that the phase transition of the systems is of the second order and a linear relationship exists between the charge density and chemical potential for all the excited states in both s-wave and p-wave insulator/superconductor models.  相似文献   

10.
Ternary transition metal nitrides, Fe3 W3N, Coa W3N, and Nia WaN~ are studied by the use of interatomic potentials acquired from lattice inversion. The study indicates that Fe3 WaN would be more stable than the other compounds in the family of intermetallic tungsten nitrides. The investigation of phonon density of states indi- cates that the lower frequency modes are mostly excited by the metal atoms, and the higher frequency modes are mostly excited by the nitrogen atoms. A qualitative analysis is carried out with the relevant potentials for the phase stability and vibrational modes.  相似文献   

11.
The nonlinear absorption and refraction of the clusters [MoS4Cu4Br2(py)6] and [Et4N]2[MoS4Cu4(SCN)4(2-pic)4] have been investigated using the z-scan technique with a ns laser at 532 nm wavelength. They have the same planar ‘open’ structures and the same skeleton metal atoms; the only difference is that the former has halogen ligands while the latter possesses pseudo-halogen groups – SCN – as ligands. Alteration of nonlinear refractive index and enhancement of nonlinear absorption were found in these two clusters. A steady state model of excited state nonlinear refraction was proposed to explain this phenomenon. Received: 12 June 2001 / Revised version: 4 September 2001 / Published online: 29 November 2001  相似文献   

12.
We report direct measurements of the excited singlet state absorption cross section and the associated nonlinear refractive cross section using picosecond pulses at 532 nm in solutions of phthalocyanine and naphthalocyanine dyes. By monitoring the transmittance and far field spatial beam distortion for different pulsewidths in the picosecond regime, we determine that both the nonlinear absorption and refraction are fluence (energy per unit area) rather than irradiance dependent. Thus, excited state absorption (ESA) is the dominant nonlinear absorption process, and the observed nonlinear refraction is also due to real population excitation.  相似文献   

13.
Nonlinear refraction and nonlinear absorption of diphenylporphyrins with bromination and metallization were studied by Z-scan technique in nanosecond and picosecond regimes. Results show that both metallization and bromination of diphenylporphyrins can cause the regular change of magnitude and sign of nonlinear absorption. The transition between saturable absorption and reverse saturable absorption happens as bromine increases and metal ion changes. The effect of bromination on nonlinear refraction is small, the change of nonlinear refraction is mainly attributed to the metallization. Influences of photophysical parameters on nonlinear absorption and nonlinear refraction have been elucidated using five-level models.  相似文献   

14.
High-order harmonic generations from a one-dimensional Coulomb potential atom are calculated with the initial state prepared as a coherent superposition between its ground and first excited states. When the energy difference of the two states is small, we can choose proper laser pulse such that the first excited state can be excited only to other bound states instead of being ionized. We show that only the hyper-Raman lines are observable instead of the harmonics. The energy difference of the ground and the first excited state can be deduced from the highest peak of the hyper-Raman lines. We further show that the similar results can be obtained by using a combination of two laser pulses with different frequencies interacting with the atom initially at the ground state.  相似文献   

15.
Four-wave mixing in resonant atomic vapors based on maximum coherence induced by Stark-chirped rapid adiabatic passage (SCRAP) is investigated theoretically. We show the advantages of a coupling scheme involving maximum coherence and demonstrate how a large atomic coherence between a ground and an highly excited state can be prepared by SCRAP. Full analytic solutions of the field propagation problem taking into account pump field depletion are derived. The solutions are obtained with the help of an Hamiltonian approach which in the adiabatic limit permits to reduce the full set of Maxwell-Bloch equations to simple canonical equations of Hamiltonian mechanics for the field variables. It is found that the conversion efficiency reached is largely enhanced if the phase mismatch induced by linear refraction is compensated. A detailed analysis of the phase matching conditions shows, however, that the phase mismatch contribution from the Kerr effect cannot be compensated simultaneously with linear refraction contribution. Therefore, the conversion efficiency in a coupling scheme involving maximum coherence prepared by SCRAP is high, but not equal to unity. Received 16 August 2002 Published online 4 February 2003 RID="a" ID="a"e-mail: korsunsky@physik.uni-kl.de  相似文献   

16.
Recent experiments show that the superexchange interaction in molecular clusters containing transition metal ions A?=?NiII and B?=?WV, NbIV or MoV in some cases is antiferromagnetic, contrary to the conventional superexchange rules. To understand this anomaly, we develop a quantum many-body model Hamiltonian and solve it exactly using a valence bond (VB) approach. We identify the various model parameters which control the ground state spin in different clusters of the A-B system. We present quantum phase diagrams that delineate the high and low-spin ground states in the parameter space. We fit the spin gap to a spin Hamiltonian and extract the effective exchange constant within the experimentally observed range, for reasonable parameter values. We also find a region of intermediate spin ground state in the parameter space, in clusters of larger size. The spin spectrum of the microscopic model cannot be reproduced by a simple Heisenberg exchange Hamiltonian. The above microscopic model is generic and can also be employed to explain photomagnetism in the MoCu6 system. We solve the model for MoCu6 and find that ground state is degenerate and is spanned by the S?=?0,?1,?2 and 3 manifolds with doubly occupied Mo site corresponding to Mo(IV) and singly occupied Cu sites corresponding to Cu(II) configurations. In each of these spin spaces, we observe that there exist charge-transfer (CT) states at ≈3?eV above the ground state which are dipole coupled to the ground state. The transition dipole in the S?=?3 manifold is the largest for the CT excitations. Coupled with the fact that the density of states of the S?=?3 manifold is sparse, compared to other spin manifolds, we expect that the S?=?3 CT excited state to be long-lived, thereby explaining the experimentally observed photomagnetism in the MoCu6 system.  相似文献   

17.
The magnetic properties of Co nanostructures and a Co monolayer on W(0 0 1) have been studied in the framework of density functional theory. Different geometries such as planar and three-dimensional clusters have been considered, with cluster sizes varying between 2 and 13 atoms. The calculations were performed using the real-space linear muffin-tin orbital method (RS-LMTO-ASA). With respect to the stability of the magnetic state, we predict an antiferromagnetic (AFM) structure for the ground state of the planar Co clusters and a ferromagnetic (FM) state for the three-dimensional clusters. For the three-dimensional clusters, one of the AFM arrangements leads to frustration due to the competing FM and AFM exchange interactions between different atoms in the cluster, and gives rise to a non-collinear state with energy close to that of the FM ground state. The relative role of the Co–Co and Co–W exchange interactions is also investigated.  相似文献   

18.
The third-order nonlinear optical properties of a series of polythiophenes are investigated with the Z-scan method under picosecond pulse laser irradiation at 532nm. The copolymers exhibit a good nonlinear response: large nonlinear refraction coefficients without nonlinear absorption. The signs of nonlinear refraction coefficients are positive, which are opposite to the negative signs of the polythiophene reported before. The mechanism accounting for the process of nonlinear refraction under pulse laser excitation is analyzed from the viewpoint of the electrondonor/acceptor units of polythiophenes. Moreover, changes of nonlinearity according to the lengths of main chains in polythiophene molecules are discussed.  相似文献   

19.
稀土材料的超快共振非线性光学特性研究   总被引:2,自引:2,他引:0  
用抽运-探测技术测量光学响应材料非线性极化率的方法,研究了稀土材料非线性折射率的共振增强和超快响应的非线性动力学过程。测得钕玻璃的三阶非线性折射 率强度系数为10^-14cm^2/W,比其基质的非线性折射率强度系数提高了2个量级。用该方法研究了Nd:YVO4、Er:YAG等晶体的超快非线性响应过程。实验结果与理论分析表明,抽支-探测技术是测量非线性极化率的简单而又灵敏的方法。这一测量技术对研究与开发超高速光响应器件具有重要的实用价值。  相似文献   

20.
We investigate the high-order harmonic generation from an atom prepared in a superposition of ground state and highly excited state. When the atom is irradiated by an ultrashort pulse, the cutoff position of the plateau in the harmonic spectrum is largely extended compared with the case that the atom is initially in the ground state. The physics of the extension of the high-order harmonic plateau can be interpreted by the spatial structure of the atomic initial wave packet. We can optimize the generation of high-order harmonics by substituting the excited state for a particular coherent superposition of some highly excited states to form a spatially localized excited wave packet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号