首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ba0.64Sr0.36TiO3 (BST) thin films are prepared on Pt/Ti/SiO2/Si3N4/SiO2/Si substrates by a sol-gel method. Thermo-sensitive BST thin film capacitors with a Metal-Ferroelectrics-Metal (M-F(BST)-M) structure are fabricated as the active elements of dielectric type uncooled infrared sensors. XRD are employed to analyze the crystallographic structures of the films. AFM observations reveal a smooth and dense surface of the films with an average grain size of about 35 nm. Rapid temperature annealing (RTA) process is a very efficient way to improve crystallization quality. The preferable annealing temperature is 800°C for 1 min. The butterfly shaped C-V curves of the capacitors indicate the films have a ferroelectric nature. The dielectric constant and dielectric loss of the films at 100 kHz are 450 and 0.038, respectively. At 25°C, where the thermo-sensitive capacitors work, the temperature coefficient of dielectric constant (TCD) is about 5.9 %/°C. These results indicate that the capacitors with sol-gel derived BST thin films are promising to develop dielectric type uncooled infrared sensors.  相似文献   

2.
Ferroelectric Bi4Ti3O12 thin films with single phase and nanosized microstructure were prepared on Pt/Ti/SiO2/Si(111) substrate by metalorganic solution deposition using titanium butoxide and bismuth nitrate at relatively low annealing temperatures. The internal strain in Bi4Ti3O12 thin films was calculated from the peak shifts and broadening of XRD patterns. With increase in annealing temperature, the uniform strain decreased from positive to zero and then to negative, and the non-uniform strain decreased and was negative. The total strain was negative and in the range of -0.2%–-1.0%, from which the stress of the films was calculated to be about -1.4×109 N/m2. The mode values of strain decreased with increase in annealing temperature and increased with increase in film thickness. The dielectric constant increased with increase in annealing temperature and film thickness. The dielectric properties were interpreted by considering the influence of strain, grain size, and grain boundaries. The strain lowered the polarization and increased the dielectric constant. The larger the grain size and the thinner the grain boundary, the greater the dielectric constant. The influence of grain size and grain boundary was stronger than that of the strain. Received: 23 September 1998 / Accepted: 6 January 1999 / Published online: 24 March 1999  相似文献   

3.
The dielectric properties of MgO-Ta2O5 continuous composition spread (CCS) thin films were investigated. The MgO-Ta2O5 CCS thin films were deposited on Pt/Ti/SiO2/Si substrates by off-Axis RF magnetron sputtering system, and then the films were annealed at 350 °C with rapid thermal annealing system in vacuum. The dielectric constant and loss of MgO-Ta2O5 CCS thin films were plotted via 1500 micron-step measuring. The specific point of Ta2O5-MgO CCS thin film (post annealed at 350 °C) showing superior dielectric properties of high dielectric constant (k ∼ 28) and low dielectric loss (tan δ < 0⋅004) at 1 MHz were found in the area of 3-5 mm apart from Ta2O5 side on the substrate. The cation's composition of thin film was Mg:Ta = 0.4:2 at%.  相似文献   

4.
Thermal chemical vapor deposition of fluorinated carbon thin films in the polymeric form is described by hot filament decomposition of the gaseous C3F6O precursor. Decomposition at filament temperatures, ≤450 °C produces films in the ordered (CF2)2n polymeric chain structure as in a tetrafluoroethylene polymer. A composite of (CF2)2n chains structure and crosslinked m(C:Fx)n phases are formed in films deposited at filament temperature ≥600 °C. Polymerization of :CF2 radicals results in (CF2)2n chain structure and the crosslinked phase emerges from a separate process involving reaction among the CF3, CFO and CF3CO radicals and including CF2. Substrate temperature affects both the C-to-F bonding configuration and the relative ratio of the composite phases. Dominant C–CF bonding structure in the low (<-5 °C) substrate temperature films is thermally less stable compared to the C–F structure, which dominates the crosslinked structure in films deposited at high (∼70 °C) substrate temperatures. Dielectric properties of the composite films are studied using the electrical equivalent model and a correlation with the C-to-F bond structure is established. High polymeric (CF2)2n phase determines the electrical impedance and the dielectric constant of the film, and the crosslinked phase imparts structural stability. PACS 81.15.Gh; 73.61.Ph; 77.84.Jd; 79.60.Fr  相似文献   

5.
(100) Oriented (PbxSr1−x)TiO3 (PST) thin films were prepared on indium tin oxide coated glass substrates by sol–gel technique with rapid thermal processing. The dielectric permittivity and tunability of the thin films with different dispersion degrees of orientation were investigated in detail by characterizing the full width at half maximum of their (100) peak based on rocking curves at different annealing temperatures. Influence of orientation dispersion on dielectric properties was exhibited in the tunable dielectric thin films. It shows that the dielectric constant and hence the tunability of the sol–gel derived PST thin films are improved with the decrease in the dispersion degree of orientation of the perovskite phase other than the increase in the content of crystalline phase in the thin films. The dielectric constant (capacitance) and figure of merit of the oriented thin films are 3–6 times and 1 times higher than that of randomly oriented thin film respectively.  相似文献   

6.
Self-oriented BiFeO3 (BFO) thin films are prepared via chemical solution deposition method with magnetic field in-situ annealing process. The effects of magnetic annealing on the microstructure, magnetic and dielectric properties as well as magnetoelectric coupling effect of the BFO thin films are investigated. With increasing the annealing magnetic field, the crystallization quality, texture, grain boundary connectivity and densification of the films are enhanced, which is attributed to the improvement of connection and diffusion of components. The magnetization of the field-annealing films and dielectric constant as well as remanent polarization increases with increasing the strength of annealing magnetic field. In addition, it is observed that magnetocapacitance value of the magnetic-field-annealing BFO thin film is higher than the non-field-annealing one. Moreover the BFO thin films annealed at 3 kOe magnetic field show the magnetoelectric effect with 4% under 2 kOe at room temperature.  相似文献   

7.
《Current Applied Physics》2020,20(6):751-754
Excellent dielectric frequency, bias, and temperature stability of bismuth silicate (Bi2SiO5, BSO) thin films with a low dielectric loss has been obtained in this study. The thin films were prepared on Pt/Ti/SiO2/Si substrates by a chemical solution deposition method at a relatively low annealing temperature of 500 °C. The BSO films have a preferred growth along (200) orientation with dense fine-grained surface morphology. The dielectric constant and dielectric loss of the thin film annealed at 500 °C are 57 and 0.01, respectively, at 100 kHz, with little change between 1 kHz and 100 kHz and in the bias electric field range between −250 kV/cm and 250 kV/cm, indicating that the thin film exhibits a low dielectric loss as well as excellent frequency and bias field stability. The dielectric-temperature measurements confirmed that the BSO thin film annealed at 500 °C also has good temperature stability between 150 K and 450 K. Our results suggest that the BSO thin films have potential applications in the next-generation integrated capacitors.  相似文献   

8.
The impact of the ZrO2/La2O3 film thickness ratio and the post deposition annealing in the temperature range between 400 °C and 600 °C on the electrical properties of ultrathin ZrO2/La2O3 high-k dielectrics grown by atomic layer deposition on (1 0 0) germanium is investigated. As-deposited stacks have a relative dielectric constant of 24 which is increased to a value of 35 after annealing at 500 °C due to the stabilization of tetragonal/cubic ZrO2 phases. This effect depends on the absolute thickness of ZrO2 within the dielectric stack and is limited due to possible interfacial reactions at the oxide/Ge interface. We show that adequate processing leads to very high-k dielectrics with EOT values below 1 nm, leakage current densities in the range of 0.01 A/cm2, and interface trap densities in the range of 2-5 × 1012 eV−1 cm−2.  相似文献   

9.
吴振宇  杨银堂  汪家友 《物理学报》2006,55(5):2572-2577
采用电子回旋共振等离子体化学气相淀积(ECR-CVD)法,以C4F8和CH4为源气体制备了非晶氟化碳(a-C:F)薄膜.X射线电子能谱(XPS)和傅里叶变换红外光谱(FTIR)分析表明,a-C:F薄膜退火后厚度减小是由于位于a-C:F薄膜交联结构末端的C—C和CF3结合态的热稳定性较差,导致退火时容易生成气态挥发物造成的.a-C:F膜介电常数在300℃氮气气氛中退火后由于电子极化增大和薄膜密度增加而上升,界面态陷阱密度从(5—9)×1011eV-1·cm-2降至(4—6)×1011eV-1·cm-2.a-C:F薄膜导电行为在低场强区域呈现欧姆特性,在高场强区域符合 Poole-Frankel机理.非定域π电子在带尾形成陷阱且陷阱能量在退火后降低,从而使更多陷阱电子在场增强热激发作用下进入导带并引起电流增大. 关键词: a-C:F ECR-CVD 键结构 电学性质  相似文献   

10.
This paper describes the structural properties and electrical characteristics of thin Dy2O3 dielectrics deposited on silicon substrates by means of reactive sputtering. The structural and morphological features of these films after postdeposition annealing were studied by X-ray diffraction and X-ray photoelectron spectroscopy. It is found that Dy2O3 dielectrics annealed at 700 °C exhibit a thinner capacitance equivalent thickness and better electrical properties, including the interface trap density and the hysteresis in the capacitance-voltage curves. Under constant current stress, the Weibull slope of the charge-to-breakdown of the 700 °C-annealed films is about 1.6. These results are attributed to the formation of well-crystallized Dy2O3 structure and the reduction of the interfacial SiO2 layer.  相似文献   

11.
《Physics letters. A》2020,384(29):126738
Tris(2-phenylpyridinato-C2, N] Iridium III, Ir(ppy)3, is experimentally investigated as a novel deposited thin film. Ir(ppy)3 thin films were fabricated by the electron beam evaporator technique. X-ray diffraction (XRD) of Ir(ppy)3 powder is investigated to be polycrystalline with triclinic crystal. XRD pattern of Ir(ppy)3 film and the annealed film is analyzed, and the average of crystallite size slightly increases with thermal annealing from 14 to 40 nm. The linear optical parameters were estimated and found that the annealing effect on lattice dielectric constants, dispersion energy, oscillator energy, and the ratio of carrier concentration to its effective mass. The Urbach energy and optical energy gap are estimated at different thermal annealing. On the other hand, dielectric constants and optical conductivity were estimated and found that the annealing plays a remarkable role in the increasing of their values. The calculated values of third-order susceptibility were increased by thermal annealing. Thus, the thermal annealing can be utilized as a tool to modify the optical properties of Ir(ppy)3 films, which can be used in many important applications such as high capacity communication network.  相似文献   

12.
周静  刘存金  李儒  陈文 《物理学报》2012,61(6):67401-067401
采用异质叠层方式制备出一定厚度的Ca(Mg1/3Nb2/3)O3/CaTiO3(CMN/CT)叠层薄膜,研究了异质界面对薄膜结构、微观形貌及介电性能的影响及其规律.根据实验测试结果,提出CMN/CT叠层薄膜的模拟等效电路,建立介电常数和介电损耗的理论计算公式.结果表明:CMN/CT异质叠层薄膜具有完全正交钙钛矿结构,结构致密,厚度均匀,薄膜中存在独立的CMN和CT相.异质界面处存在过渡层,随着薄膜中异质界面个数增加,介电常数增大,介电损耗减小.减小界面过渡层的厚度,有利于提高CMN/CT叠层薄膜的介电性能.  相似文献   

13.
(Pb,Ca)TiO3 (PCT) thin films have been deposited on Pt/Ti/SiO2/Si substrate by metal-organic decomposition (MOD) technique. The film processing parameters such as drying and annealing temperatures have been optimized to obtain good-quality PCT films. Compositional analysis of the film has been studied by X-ray photoelectron spectroscopy (XPS). The effect of the annealing temperature on the crystalline structure, microstructure and electrical properties have been investigated by X-ray diffraction, atomic force microscopy (AFM) and impedance analyzer, respectively. Amorphous PCT films form at 350 °C and crystallize in the perovskite phase following the isothermal annealing at ?650 °C for 3 h in oxygen ambient. Typical tetragonal structure of the PCT film is evidenced from X-ray diffraction pattern. The grain size in the PCT films increases with an increase in annealing temperature. Significant improvement in the dielectric constant value is observed as compared to other reported work on PCT films. The observed dielectric constant and dissipation factor at 100 kHz for 650 °C annealed PCT films are 308 and 0.015, respectively. The correlation of the film microstructural features and electrical behaviors is described.  相似文献   

14.
Nanostructured TiO2 thin films were deposited on quartz glass at room temperature by sol–gel dip coating method. The effects of annealing temperature between 200C to 1100C were investigated on the structural, morphological, and optical properties of these films. The X-ray diffraction results showed that nanostructured TiO2 thin film annealed at between 200C to 600C was amorphous transformed into the anatase phase at 700C, and further into rutile phase at 1000C. The crystallite size of TiO2 thin films was increased with increasing annealing temperature. From atomic force microscopy images it was confirmed that the microstructure of annealed thin films changed from column to nubbly. Besides, surface roughness of the thin films increases from 1.82 to 5.20 nm, and at the same time, average grain size as well grows up from about 39 to 313 nm with increase of the annealing temperature. The transmittance of the thin films annealed at 1000 and 1100C was reduced significantly in the wavelength range of about 300–700 nm due to the change of crystallite phase. Refractive index and optical high dielectric constant of the n-TiO2 thin films were increased with increasing annealing temperature, and the film thickness and the optical band gap of nanostructured TiO2 thin films were decreased.  相似文献   

15.
High-k gate dielectric HfO2 thin films have been deposited on Si(1 0 0) by using plasma oxidation of sputtered metallic Hf thin films. The optical and electrical properties in relation to postdeposition annealing temperatures are investigated by spectroscopic ellipsometry (SE) and capacitance-voltage (C-V) characteristics in detail. X-ray diffraction (XRD) measurement shows that the as-deposited HfO2 films are basically amorphous. Based on a parameterized Tauc-Lorentz dispersion mode, excellent agreement has been found between the experimental and the simulated spectra, and the optical constants of the as-deposited and annealed films related to the annealing temperature are systematically extracted. Increases in the refractive index n and extinction coefficient k, with increasing annealing temperature are observed due to the formation of more closely packed thin films and the enhancement of scattering effect in the targeted HfO2 film. Change of the complex dielectric function and reduction of optical band gap with an increase in annealing temperature are discussed. The extracted direct band gap related to the structure varies from 5.77, 5.65, and 5.56 eV for the as-deposited and annealed thin films at 700 and 800 °C, respectively. It has been found from the C-V measurement the decrease of accumulation capacitance values upon annealing, which can be contributed to the growth of the interfacial layer with lower dielectric constant upon postannealing. The flat-band voltage shifts negatively due to positive charge generated during postannealing.  相似文献   

16.
The monolayer Al2O3:Ag thin films were prepared by magnetron sputtering. The microstructure and optical properties of thin film after annealing at 700 °C in air were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and spectrophotometer. It revealed that the particle shape, size, and distribution across the film were greatly changed before and after annealing. The surface plasmon resonance absorption and thermal stability of the film were found to be strongly dependent on the film thickness, which was believed to be associated with the evolution process of particle diffusion, agglomeration, and evaporation during annealing at high temperature. When the film thickness was smaller than 90 nm, the film SPR absorption can be attenuated until extinct with increasing annealing time due to the evaporation of Ag particles. While the film thickness was larger than 120 nm, the absorption can keep constant even after annealing for 64 h due to the agglomeration of Ag particles. On the base of film thickness results, the multilayer Al2O3:Ag solar selective thin films were prepared and the thermal stability test illustrated that the solar selectivity of multilayer films with absorbing layer thickness larger than 120 nm did not degrade after annealing at 500 °C for 70 h in air. It can be concluded that film thickness is an important factor to control the thermal stability of Al2O3:Ag thin films as high-temperature solar selective absorbers.  相似文献   

17.
《Current Applied Physics》2014,14(9):1304-1311
We report a successful fabrication of 300 nm thick carbon nanotubes and Pb(Zr0.52Ti0.48)O3 (CNT–PZT) nanocomposite thin films with annealing temperature as low as 500 °C in H2/N2 atmosphere. Realizing the thickness of CNT–PZT nanocomposite thin films down to few hundred nanometers is one way to reduce the operating voltage of its application to micro- or nano-electromechanical system. The field emission scanning electron microscopic and atomic microscopic analysis revealed that the nanocomposite thin films annealed in H2/N2 atmosphere exhibits the most favorable surface morphology with adequate perovskite (111) reflection of PZT based on X-ray diffraction analysis. The measured dielectric constant and loss tangent of the nanocomposite thin films show that the annealing duration of 30 min promotes the optimum dielectric properties of the nanocomposite thin films. Our observations suggest that the annealing atmosphere and duration are important parameters in controlling the crystallization behavior hence the dielectric properties of the nanocomposite thin films, which can be readily applicable to other nanocomposite thin films.  相似文献   

18.
Spontaneous polarization and polarization in an alternating electric field of finely disperse dielectrics KMnO4, Pb(NO3)2, and CsNO3 after the appearance of current carriers upon the chemisorption of hydrogen are studied. The real part of their dielectric constant becomes negative, and low frequency dispersion of this quantity due to the Lorentz correction is observed. The spontaneous polarization of finely disperse dielectrics and the low frequency dispersion of their dielectric constant are determined by the properties of conduction electrons whose wave functions are limited by the powder grain size. The character of electronic phenomena and energy exchange upon the polarization of finely disperse dielectrics depends on the position of the Fermi level on their surface. An original method of research is applied.  相似文献   

19.
The nanostructuring of dielectrics is a big challenge for laser patterning methods. In this study a novel laser structuring method for the fabrication of randomly distributed nanostructures, called laser-induced front side etching using in situ pre-structured metal layers (IPSM-LIFE), is presented. The pulsed laser irradiation of a thin metal film deposited onto a dielectric substrate with fluences below the ablation threshold results in the formation of randomly distributed metal structures by self-assembly processes. Further pulsed laser irradiation of these metal structures with higher or equal laser fluences causes the formation of complex patterns at the surface of the dielectric due to localized ablation and melting processes of the dielectric surface induced by the absorption of the laser energy by the metal structures and the local energy transfer into the dielectric surface. The pattern formation observed in the film and the dielectrics substrate after irradiation of 10 nm chromium layers on fused silica, with laser pulses (Δt p =25 ns, λ=248 nm), was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Different features with a lateral size down to a few tens of nanometers, like concentric ring patterns, donut-like structures, and bar patterns were observed at the dielectric.  相似文献   

20.
A new ternary rare oxide dielectric LaYbO3 film had been prepared on silicon wafers and quartz substrates by reactive sputtering method using a La-Yb metal target. A range of analysis techniques was performed to determine the optical band gap, thermal stability, and electrical property of the deposited samples. It was found the band gap of LaYbO3 film was about 5.8 eV. And the crystallization temperature for rapid thermal annealing (20 s) was between 900 and 950 °C. X-ray photoelectron spectroscopy results indicate the formation of the SiO2 and silicate in the interface between silicon wafer and LaYbO3 film. The dielectric constant is about 23 from the calculation of capacitance-voltage curve, which is comparable higher than previously reported La2O3 or Yb2O3 film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号