首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutrino masses     
A status report about experimental searches for neutrino masses is given. Direct mass experiments for the three different neutrino flavours are discussed. Under the assumption of neutrino mixing results of experiments looking for neutrino decay and distortions in spectra of weak decays are reported.  相似文献   

2.
Present neutrino data are consistent with neutrino masses arising from a common seed at some "neutrino unification" scale M(X). Such a simple theoretical ansatz naturally leads to quasidegenerate neutrinos that could lie in the electron-volt range with neutrino mass splittings induced by renormalization effects associated with supersymmetric thresholds. In such a scheme the leptonic analog of the Cabibbo angle straight theta(middle dot in circle) describing solar neutrino oscillations is nearly maximal. Its exact value is correlated with the smallness of straight theta(reactor). The two leading mass-eigenstate neutrinos present in nu(e) form a pseudo-Dirac neutrino, avoiding conflict with neutrinoless double beta decay.  相似文献   

3.
The main goal of the paper is to give a short review on neutrino electromagnetic properties. In the introductory part of the paper a summary on what we really know about neutrinos is given: we discuss the basics of neutrino mass and mixing as well as the phenomenology of neutrino oscillations. This is important for the following discussion on neutrino electromagnetic properties that starts with a derivation of the neutrino electromagnetic vertex function in the most general form, that follows from the requirement of Lorentz invariance, for both the Dirac and Majorana cases. Then, the problem of the neutrino form factor definition and calculation within gauge models is considered. In particular, we discuss the neutrino electric charge form factor and charge radius, dipole magnetic and electric and anapole form factors. Available experimental constraints on neutrino electromagnetic properties are also discussed, and the recently obtained experimental limits on neutrino magnetic moments are reviewed. The most important neutrino electromagnetic processes involving a direct neutrino coupling with photons (such as neutrino radiative decay, neutrino Cherenkov radiation, spin light of neutrino and plasmon decay into neutrino-antineutrino pair in media) and neutrino resonant spin-flavor precession in a magnetic field are discussed at the end of the paper.  相似文献   

4.
Neutrino     
Neutrinos are the only fundamental fermions which have no electric charges. Because of that neutrinos have no direct electromagnetic interaction and at relatively small energies they can take part only in weak processes with virtual W ± and Z 0 bosons. Neutrino masses are many orders of magnitude smaller than masses of charged leptons and quarks. These two circumstances make neutrinos unique, special particles. The history of the neutrino is very interesting, exciting and instructive. We try here to follow the main stages of the neutrino history starting from the famous Pauli letter and finishing with the discovery and study of neutrino oscillations. Outstanding contribution to the neutrino physics of Bruno Pontecorvo is discussed in some details.  相似文献   

5.
讨论了中微子混合,中微子振荡的基本原理和实验情况,定量地研究了真空中中微子振荡的理论,计算了中微子振荡几率和CP破坏效应.  相似文献   

6.
The observational and theoretical status of neutrino oscillations in connection with solar and atmospheric neutrino anomalies is presented briefly. The effect of neutrino oscillations on the evolution of the early Universe is discussed in detail. A short review is given of the standard Big Bang Nucleosynthesis (BBN) and the influence of resonant and non-resonant neutrino oscillations on active neutrinos and on primordial synthesis of He-4. BBN cosmological constraints on neutrino oscillation parameters are discussed.  相似文献   

7.
Prospects for neutrino oscillation experiments with neutrino factories based on muon decay and conventional superbeams are discussed with a special emphasis on the neutrino beam properties.  相似文献   

8.
We consider a thought experiment, in which a neutrino is produced by an electron on a nucleus in a crystal. The wave function of the oscillating neutrino is calculated assuming that the electron is described by a wave packet. If the electron is relativistic and the spatial size of its wave packet is much larger than the size of the crystal cell, then the wave packet of the produced neutrino has essentially the same size as the wave packet of the electron. We investigate the suppression of neutrino oscillations at large distances caused by two mechanisms: (1) spatial separation of wave packets corresponding to different neutrino masses; (2) neutrino energy dispersion for given neutrino mass eigenstates. We resolve the contributions of these two mechanisms. Received: 26 July 2005, Published online: 6 October 2005  相似文献   

9.
Cosmology yields the most restrictive limits on neutrino masses and conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem and can have a significant impact on supernova physics. The neutrino signal from a future galactic supernova could provide evidence for cosmologically interesting neutrino masses or set interesting limits.  相似文献   

10.
The neutrino luminosity of a degenerate electron gas in a strong magnetic field under conditions of the neutron-star crust owing to plasmon decay to a neutrino pair via a nonstandard mechanism associated with the hypothesized neutrino electric millicharge is calculated. Relative upper bounds on the magnitude of the millicharge are obtained from a comparison of the results of this calculation with the neutrino luminosity caused by the respective standard process and with the luminosity induced by the neutrino magnetic moment.  相似文献   

11.
Sandip Pakvasa 《Pramana》2000,54(1):65-77
I review explanations for the three neutrino anomalies (solar, atmospheric and LSND) which go beyond the ‘conventional’ neutrino oscillations induced by mass-mixing. Several of these require non-zero neutrino masses as well.  相似文献   

12.
讨论了中微子味混合与中微子振荡的理论,定量地研究了在中微子振荡中的CP破坏效应.在一类超对称模型中,计算了真空中中微子振荡几率和 CP破坏效应.  相似文献   

13.
We discuss a possibility to relate neutrino mass to dark matter. If we suppose that neutrino masses are generated through a radiative seesaw mechanism, dark matter may be identified with a stable field which is relevant to the neutrino mass generation. The model is severely constrained by lepton flavor violating processes. We show some solutions to this constraint.  相似文献   

14.
The purely leptonic decays of the tau and the radiative decay of the pion provide determinations of the tau neutrino and muon neutrino masses, respectively. The shift of the energy at which the tau decay spectrum attains its maximum and the forward-backward ratio are both large enough to determine tau neutrino masses of about 100 MeV. The photon endpoint energy and partially integrated differential decay rate in pion decay are sensitive to a neutrino mass as small as 100 keV. Thus, the present bounds on neutrino masses can be significantly improved.  相似文献   

15.
Cosmology provides an excellent laboratory for testing various aspects of neutrino physics. Here, I review the current status of cosmological searches for neutrino mass, as well as other properties of neutrinos. Future cosmological probes of neutrino properties are also discussed in detail.  相似文献   

16.
Cosmological data are reviewed questioning whether the universe may be open and dominated by neutrinos and gravitons rather than by baryons. The thermal history of the Lepton Era is investigated incorporating the effects of neutral currents, additional neutrinos, and a small neutrino mass. In the canonical version of Big Bang cosmology (equal numbers of neutrinos and antineutrinos), the neutrino number and energy density is, like that of photons, gravitationally insignificant unless the neutrino has a small mass (10 eV). The neutrino sea can be cosmologically significant if it is degenerate (so that the net leptonic or muonic charge is nonzero) with7×10 5 neutrinos (or antineutrinos) per cm.3 This density homogeneously spread out is still so low that even the most energetic cosmic ray protons will not be stopped, even if neutral currents exist with the usual weak strength. If these degenerate neutrinos have a small mass (0.5 eV), they will condense into degenerate neutrino superstars of the size and mass of galactic clusters. If neutral currents make the (ev) (ev) coupling five times greater than what it is in V — A theory, nucleosynthesis commences a little earlier than conventionally assumed. This increases the cosmological He4 abundance predicted only slightly from Y= 0.27 to Y= 0.29. An appendix reviews the effect of neutral currents on neutrino processes in stars.Supported in part by the U.S.A.E.C.  相似文献   

17.
Using a 3 + 1 neutrino model with one sterile and the three standard active neutrinos with a 4 × 4 unitary transformation matrix, U, relating flavor to mass neutrino states, the probability of ν μ to ν e transition is estimated using sterile-active neutrino masses determined by MiniBooNE and other experiments and sterile-active neutrino angles in the 4 × 4 U matrix.  相似文献   

18.
Sudhir K Vempati 《Pramana》2000,55(1-2):277-282
It has been known for sometime that supersymmetric theories with R-parity violation provide a natural framework where small neutrino masses can be generated. We discuss neutrino masses and mixing in these theories in the presence of trilinear lepton number violating couplings. It will be shown that simultaneous solutions to solar and atmospheric neutrino problems can be realized in these models.  相似文献   

19.
Thomas Schwetz 《Pramana》2009,72(1):119-129
The status of neutrino oscillations from global data is summarized, with the focus on the three-flavour picture. The status of sterile neutrino oscillation interpretations of the LSND anomaly in the light of recent MiniBooNE results is also discussed. Furthermore, an outlook on the measurement of the mixing angle ϑ 13 in the near term future, as well as prospects to discover CP violation in neutrino oscillations and to determine the type of the neutrino mass ordering by long-baseline experiments in the long term future are given.   相似文献   

20.
We propose the new mechanism of neutrino flavor relaxation to explain the experimentally observed changes of initial neutrino flavor fluxes. The test of neutrino relaxation hypothesis is presented using the data of modern reactor, solar, and accelerator experiments. The final choice between the standard neutrino oscillations and the proposed neutrino flavor relaxation model can be done in future experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号