首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ion current collected by a probe biased at the cathode potential and located behind an annular anode of a vacuum arc is measured as a function of distance to the cathode and background argon pressure. The arc is formed between a circular Cu cathode and an annular anode. Arc current is 170 A, and the arc duration is 0.9 s. The arc is ignited by momentary contact of a movable W trigger rod (held at anode potential) with the cathode. Arc voltage, arc current, and ion current are measured using an analog data acquisition card and a personal computer. Arc voltage and arc current values are stable during the arc and their normalized standard deviation is less than 0.07. Ion current is noisy and fluctuates during the arc with a normalized standard deviation that varies from 0.5 at p<0.1 torr up to more than 1.5 at p>1 torr  相似文献   

2.
When double‐break vacuum circuit breakers (VCBs) interrupt the fault current, the series arc will generate their individual magnetic fields in different breaks. The magnetic field in one break will influence the arc in another break if the magnetic field is strong enough or the two breaks are very close. In this case, an interactive magnetic field effect happens. This field is also called the bias magnetic field (BMF). BMF can cause anode erosion and affect the performance at current zero. The distribution of BMF and the optimal configuration of the double‐break VCBs were obtained by the electromagnetic field simulation using the Ansoft Maxwell software. Based on the simulated magnetic field data, in the experiments, the interaction between the series vacuum arcs in double‐break VCBs was equivalent to the interaction between a single vacuum arc and the magnetic field generated by a Helmholtz coil. A high‐speed CMOS camera was used to record the trajectory of the vacuum arc plasma under different BMFs with different types of contacts. The results show the BMF can increase the arc voltage, and the arc becomes unstable. When the BMF becomes stronger, the arc voltage increases, and the arc becomes more unstable. In addition, for different types of contacts, the development process of the arc and the influence level are different under the same BMF. For a Wan‐type transverse magnetic field (TMF) contact or strong BMF, metal sputtering is evident and anode erosion becomes serious. For a cup‐type axial magnetic field (AMF) contact, the influence of BMF on the series arc plasma in double‐break VCBs is less than that of the Wan‐type TMF contact. The results of this work may be helpful for the design of compact double‐break VCBs.  相似文献   

3.
The characteristics of a vacuum arc between CuCr contacts under an axial magnetic field have been investigated. Test samples were made of CuCr contacts, and the arcing voltage was measured. The arcing voltage of the CuCr contacts under an axial magnetic field is lower than that of pure copper contacts by 10-20 V. From the measurement of the post-arc current and interruption test results, it was found that the arc concentrates and a part of the electrode melts at a rather low current, but that the electrode melting does not affect the interrupting capability. Also, the insulation characteristics were measured. With respect to voltage conditioning, high-current conditioning improved the breakdown voltage by 50 percent for a 20-mm gap and by 100 percent for a 3-mm gap. These test results show that CuCr contacts, used with axial magnetic fields, are promising for use in high-voltage and high-power vacuum interrupters.  相似文献   

4.
Stationary plasma discharges have been investigated in a high vacuum ambient (background gas pressure <10-2 Pa), with an externally heated cathode and a consumable hot evaporating anode. With various anode materials like chromium or copper, and electrode separations between 0.5 and 3 mm, the nonself-sustained discharge operates with DC arc currents in the range of 220 A. The waveform of the arc voltage is strongly influenced by the magnetic field of the cathode heating current, and arc voltages between a minimum of 3 V and a maximum exceeding 100 V have been observed. The voltage-current characteristics (VCC) and the influence of the electrode separation have been measured separately for the minimum and the maximum of the arc voltages and show a different behavior. The metal plasma expands into the ambient vacuum toward the walls of the vacuum vessel and offers a macroparticle free deposition source of thin films. The arc voltage can be varied by external manipulations of the arc discharge, and the mean ion energy of the expanding metal plasma shows a linear dependence of the mean arc voltage  相似文献   

5.
One of the key problems in the development of plasma separation technology is designing a plasma source which uses condensed spent nuclear fuel (SNF) or nuclear wastes as a raw material. This paper covers the experimental study of the evaporation and ionization of model materials (gadolinium, niobium oxide, and titanium oxide). For these purposes, a vacuum arc with a heated cathode on the studied material was initiated and its parameters in different regimes were studied. During the experiment, the cathode temperature, arc current, arc voltage, and plasma radiation spectra were measured, and also probe measurements were carried out. It was found that the increase in the cathode heating power leads to the decrease in the arc voltage (to 3 V). This fact makes it possible to reduce the electron energy and achieve singly ionized plasma with a high degree of ionization to fulfill one of the requirements for plasma separation of SNF. This finding is supported by the analysis of the plasma radiation spectrum and the results of the probe diagnostics.  相似文献   

6.
The relationship between the transported ion current and the cathodic arc current is determined in a vacuum arc plasma source equipped with a curved magnetic filter. Our results suggest that the outer and inner walls of the duct interact with the plasma independently. The duct magnetic field is a critical factor of the plasma output. The duct transport efficiency is to maximize at a value of bias plate voltage in the range +10 V to +20 V, and independent (within our limit of measurement) of the magnetic field strength in the duct. The plasma flux is composed of two components: a diffusion flux in the transverse direction due to particle collisions, and a drift flux due to the ion inertia. The inner wall of the magnetic duct sees only the diffusion flux while the outer wall receives both fluxes. Thus, applying a positive potential to the outer duct wall can reflect the ions and increase the output current. Our experimental data also show that biasing both sides of the duct is more effective than biasing the outer wall alone.  相似文献   

7.
At high current, the performance of triggered vacuum gaps (TVGs) is limited by constriction of the vacuum arc. Several concentrated modes can be defined, i.e., foot point, anode spot, and intense arc mode. In all cases, small, luminous, high-temperature spots (from melting to boiling temperature) appear on the anode surface. In accordance with the anodic mode, the arc voltage has different characteristics (quiet and low or with high-frequency noise). The arc voltage is measured for different electrode configurations for a conduction time of 27 μs and for peak current up to 45 kA. For small gap distances (1-1.5 mm), the arc voltage is quiet and low (20 to 30 V) and almost independent of the peak current. For greater distances, the arc voltage increases with the distance and the peak current. If the peak current is higher than the threshold interruption current, the arc voltage is high and noisy. These overvoltages, with a frequency of about one megahertz, can reach more than 1000 V. These overvoltages disappear completely after about 15 μs, and the voltage decreases  相似文献   

8.
In previous work (1992), the authors studied the characteristics of gated field emitter failures and developed a theory to explain failure initiation. During a failure, the voltage between the emitter tip and gate (spaced 1 μm apart) was found to drop from -140 V to ≈-10 V. The current density was found to be ~1012 A/m2 during the failure, and plumes of ions and electrons were injected into vacuum. The ratio of ion current to electron current was found to be 10%. Those results indicated that the failures were similar to cathodic vacuum arcs. In the present study the energies of the ions and electrons are measured using a retarding potential energy analyzer. The results show that there are ions with energies as high as 80 eV and electrons with energies of 6 eV. The high-energy ions confirm that emitter failures are cathodic vacuum arcs  相似文献   

9.
The basic characteristics of a vacuum arc are investigated with a special electrode whose cathode consists of two half-disks. Pure copper is used for one part of the cathode, while copper, chromium, silver, and titanium are used for the other part. The tested arc current value is less than 4000 A, and the flux density of the axial magnetic field applied to a vacuum arc is less than 0.015 T. Experimental results show that the arc voltages of dual-part cathode electrodes are much lower than those of the individual pure metals, and that current sharing between the two parts is roughly determined by the arc current-voltage characteristics of the metals. The arc voltage of the dual-part cathode electrode is extremely low when the current is less than 1000 A  相似文献   

10.
It is shown that the fraction of multiply charged metal ions generated in a vacuum arc discharge plasma grows substantially in a high magnetic field. This effect was observed for more than 30 different cathode materials. A relation is established between growth of the mean charge of the ions and increases in the burning voltage of the arc. It is demonstrated that the burning voltage of the vacuum arc can be ultimately increased to 160 V. Zh. Tekh. Fiz. 68, 39–43 (May 1998)  相似文献   

11.
The interaction between diffuse vacuum arcs and magnetic fields applied transverse to the electrode axis has been investigated both theoretically and experimentally. For arc currents < 6 kA, Hall electric fields, generated by the interaction, bow the plasma out of contact with the anode and raise the arc voltage. In the presence of a parallel capacitor, the arc current falls to zero and the arc is extinguished. For arc currents of 6 to 15 kA, arc extinction can be achieved with an oscillatory magnetic field; during such extinctions the arc voltage remains in phase with the magnitude of the field. Arc extinction via magnetic field/vacuum arc interaction could have applications to ac-current limiters and dc breakers. The fault current limiter application is discussed in this paper.  相似文献   

12.
Understanding plasma initiation in vacuum arc discharges can help to bridge the gap between nano‐scale triggering phenomena and the macroscopic surface damage caused by vacuum arcs. We present a new twodimensional particle‐in‐cell tool to simulate plasma initiation in direct‐current (DC) copper vacuum arc discharges starting from a single, strong field emitter at the cathode. Our simulations describe in detail how a sub‐micron field emission site can evolve to a macroscopic vacuum arc discharge, and provide a possible explanation for why and how cathode spots can spread on the cathode surface. Furthermore, the model provides us with a prediction for the current and voltage characteristics, as well as for properties of the plasma like densities, fluxes and electric potentials in a simple DC discharge case, which are in agreement with the known experimental values. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
A one-dimensional (1-D) physical model of the low-current-density steady-state vacuum arc is proposed. The model is based on the continuity equations for ions and electrons and the energy balance for the discharge system; the electric potential distribution in the discharge gap is assumed to be nonmonotonic. It is supposed that the ion current at the cathode is generated within the cathode potential fall region due to the ionization of the evaporated atoms by the plasma thermal electrons having Boltzmann's energy distribution. The model offers a satisfactory explanation for the principal regularities of a hot-cathode vacuum arc with diffuse attachment of the current. The applicability of the model proposed to the explanation of some processes occurring in a vacuum arc, such as the flow of fast ions toward the anode, the current cutoffs and voltage bursts, and the backward motion of a cathode spot in a transverse magnetic field is discussed  相似文献   

14.
A crossed-field cold-hollow-cathode arc is stable at low working gas pressures of 10−2–10−1 Pa, magnetic-field-and gas-dependent arcing voltages of 20–50 V, and discharge currents of 20–200 A. This is because electrons come from a cathode spot produced on the inner cathode surface by a discharge over the dielectric surface. The magnetic field influences the arcing voltage and discharge current most significantly. When the plasma conductivity in the cathode region decreases in the electric field direction, the magnetic field increases, causing the discharge current to decline and the discharge voltage to rise. The discharge is quenched when a critical magnetic field depending on the type of gas is reached. Because of the absence of heated elements, the hollow cathode remains efficient for long when an arc is initiated in both inert and chemically active gases.  相似文献   

15.
With the experiments presented in this paper, applications of a retarding field analyzer (RFA) for the measurement of the ion energy E i in a vacuum arc plasma are discussed. The examined plasma was produced by a sinusoidal half-wave vacuum arc current. The experiments were concentrated on evaluating the plasma parameters at the last three milliseconds before current zero. In a current range from 300 Arms to 10 kArms, the ion energy distributions and their peak values were evaluated. With the increase of the arc current, a decrease of the ion energy was found. By additional investigations of the angular distribution of the ion energies, a transition from a collision dominated interelectrode plasma to a freely expanding plasma was observed, depending on the arc current  相似文献   

16.
The plasma jet focusing and voltage distribution in the interelectrode gap of a vacuum arc with a ring anode and subjected to an axial magnetic field were studied theoretically. A two-dimensional model was developed based on the free plasma jet expansion into vacuum, and the steady-state solution of the fully ionized plasma in the hydrodynamic approximation was analyzed. It was found that the imposition of an axial magnetic field reduces the radial expansion of the plasma jet. The characteristic jet angle decreases from about 40° in the zero magnetic field case and approaches a value of about 20° with a 0.02 T magnetic field. The arc voltage consisting of the cathode drop, the plasma voltage drop, and anode sheath drop increased, with the imposition of a magnetic field, and decreased with the anode length. The model was compared to experimental measurements of the vacuum arc voltage behavior in an axial magnetic field, and good agreement was found  相似文献   

17.
A residual gas in a vacuum arc chamber influences the behavior of the arc by two effects: it changes the state of the cathode surface, in particular the surface cleanness, and it influences the interelectrode plasma. Experiments are summarized dealing with the influence of the residual gas on the arc parameters in a pressure range of 10-6-10-5 Pa. With increasing pressure, general tendencies are a decrease in the fluctuations of the burning voltage, in the chopping current, and in the current density, and an increase in the arc lifetime, spot velocity, and spot diameter. The conditions at the cathode surface are decisive for the spot behavior and not the pressure. Surface contaminations render the arc more stable. The transition between the so-called cathode spot type 1 (on contaminated surfaces) and type 2 (on clean surfaces) was found to be smooth rather than abrupt  相似文献   

18.
小功率等离子体射流的流特性   总被引:3,自引:0,他引:3  
采用焓探针对小功率(5kW)热喷涂等离子体射流的焓、温度和速度进行了测量和计算。研究了气体成分、流量、电弧电压和电流对等离子流体的焓、温度和速度分布的影响。结果表明,对于单一氩气等离子体,当使用新喷嘴时,增大氩气流量能够使喷嘴内部电弧弧根向出口方向移动,从而增加等离子体射流的焓、温度和速度。对于Ar-N2等离子体,增加气体中氮气的含量,会提高等离子电弧电压,在同样的输入功率下,改变等离子电流和电压对等离子体的焓、温度和速度影响较小。对于Ar-N2等离子体,增加氢气含量会明显地提高等离子射流的速度和热传递。  相似文献   

19.
Parameters and ion-emission characteristics of the plasma generated in the anode stage of an ion source with a hollow glow-discharge plasma cathode are studied. To decrease the minimum operating gas pressure to 5×103 Pa, a multipole magnetic system was installed on the surface of the hollow cathode and the peripheral magnetic field was enhanced in the anode stage of the source. The effect of the gas pressure, the plasma-cathode current, and the voltage between the electrodes of the anode stage on the value of the ion current extracted from the plasma is investigated. It is found that the size of the exit aperture of the hollow cathode substantially affects the efficiency of ion extraction. The potential (1–5 V) and the electron temperature (1–8 eV) of the anode-stage plasma are measured by the probe method. The conditions are determined that ensure the maximum ion-emission current from the plasma at low gas pressures.  相似文献   

20.
By using ferromagnetic material around electrodes to generate strong nonuniform magnetic fields, vacuum arcs can be kept in well-defined diffuse mode or multiple arc mode. As a result, the arc voltage is low and stable, the current is confined in certain areas, and high interrupting ability and small size are achieved. The different arc modes for different electrodes, the arc voltage versus arc current for flat electrodes, horseshoe, and four-pole electrode, and the vacuum arc distribution are measured. The criteria of choice of electrode diameter and electrode distance are given  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号