首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The scalar and electromagnetic fields of charges uniformly accelerated in de Sitter spacetime are constructed. They represent the generalization of the Born solutions describing fields of two particles with hyperbolic motion in flat spacetime. In the limit Lambda-->0, the Born solutions are retrieved. Since in the de Sitter universe the infinities I+/- are spacelike, the radiative properties of the fields depend on the way in which a given point of I+/- is approached. The fields must involve both retarded and advanced effects: Purely retarded fields do not satisfy the constraints at the past infinity I-.  相似文献   

2.
3.
Recent astronomical observations manifest that about two-thirds of the whole energy in the Universe is contributed by a small positive cosmological constant A (> 0). Then, an asymptotically de Sitter spacetime is premised naturally. However, physics in the de Sitter spacetime is very different from that in the Minkowski spacetime. As the first step, a covariant formalism of the kinematics in the de Sitter spacetime is presented here. By solving exactly the equations of motion for a field, we obtain the dispersion relation of a free particle. It is noticed that the dispersion relation is dependent on the degree of freedom of angular momentum of the particle. We show the threshold anomaly of the ultra high energy cosmic ray disappears naturally in the framework of the de Sitter kinematics.  相似文献   

4.
张丽春  李怀繁  赵仁 《物理学报》2010,59(12):8994-8998
在考虑黑洞视界与宇宙视界具有关联性的基础上,证明de Sitter时空的热力学熵为黑洞视界热力学熵与宇宙视界热力学熵之和.给出了考虑两视界具有关联性后的de Sitter时空的热力学特性.研究表明,de Sitter时空的能量上限为纯de Sitter时空能量,deSitter时空的热容量是负的,de Sitter时空一般是量子力学不稳定的.  相似文献   

5.
Ion I. Cot?escu 《中国物理C(英文版)》2021,45(10):105101-105101-10
The kinematics on spatially flat FLRW spacetimes is presented for the first time in local charts with physical coordinates, i.e., the cosmic time and proper Cartesian space coordinates of Painlevé-type. It is shown that there exists a conserved momentum that determines the form of the covariant four-momentum on geodesics in terms of physical coordinates. Moreover, with the help of this conserved momentum, the peculiar momentum can be defined, thus separating the peculiar and recessional motions without ambiguity. It is shown that the energy and peculiar momentum satisfy the mass-shell condition of special relativity while the recessional momentum does not produce energy. In this framework, the measurements of the kinetic quantities along geodesics performed by different observers are analyzed, pointing out an energy loss of the massive particles similar to that producing the photon redshift. The examples of the kinematics on the de Sitter expanding universe and a new Milne-type spacetime are extensively analyzed.  相似文献   

6.
There exist Kruskal like coordinates for the Reissner–Nordstrom (RN) black hole spacetime which are regular at coordinate singularities. Non-existence of such coordinates for the extreme RN black hole spacetime has already been shown. Also the Carter coordinates available for the extreme case are not manifestly regular at the coordinate singularity, therefore, a numerical procedure was developed to obtain free fall geodesics and flat foliation for the extreme RN black hole spacetime. The Kottler–Schwarzschild–de Sitter (KSSdS) spacetime geometry is similar to the RN geometry in the sense that, like the RN case, there exist non-singular coordinates when there are two distinct coordinate singularities. There are no manifestly regular coordinates for the extreme KSSdS case. In this paper foliation of all the cases of the KSSdS spacetime by flat spacelike hypersurfaces is obtained by introducing a non-singular time coordinate.  相似文献   

7.
We extend the classical Damour–Ruffini method and discuss Hawking radiation in Kerr–Newman–de Sitter (KNdS) black hole. Under the condition that the total energy, angular momentum and charge of spacetime are conserved, taking the reaction of the radiation of the particle to the spacetime and the relation between the black hole event horizon and the cosmological horizon into consideration, we derive the black hole radiation spectrum. The radiation spectrum is no longer a pure thermal one. It is related to the change of the Bekenstein–Hawking entropy corresponding the black hole event horizon and the cosmological horizon. It is consistent with the underlying unitary theory.  相似文献   

8.
The causal properties of the family of Kerr-de Sitter spacetimes are analyzed and compared to those of the Kerr family. First, an inextendible Kerr-de Sitter spacetime is obtained by joining together Carter’s blocks, i.e. suitable four dimensional spacetime regions contained within Killing horizons or within a Killing horizon and an asymptotic de Sitter region. Based on this property, and leaving aside topological identifications, we show that the causal properties of a Kerr-de Sitter spacetime are determined by the causal properties of the individual Carter’s blocks viewed as spacetimes in their own right. We show that any Carter’s block is stably causal except for the blocks that contain the ring singularity. The latter are vicious sets, i.e. any two events within such block can be connected by a future (respectively past) directed timelike curve. This behavior is identical to the causal behavior of the Boyer–Lindquist blocks that contain the Kerr ring singularity. These blocks are also vicious as demonstrated long ago by Carter. On the other hand, while for the case of a naked Kerr singularity the entire spacetime is vicious and thus closed timelike curves pass through any event including events in the asymptotic region, for the case of a Kerr-de Sitter spacetime the cosmological horizons protect the asymptotic de Sitter region from a-causal influences. In that regard, a positive cosmological constant appears to improve the causal behavior of the underlying spacetime.  相似文献   

9.
Considering the relationship between the black hole horizon and the cosmological horizon, the thermodynamic property of the charged de Sitter spacetime is discussed. The effective temperature and energy are obtained. The result shows that the upper limit of the energy in the charged de Sitter spacetime is just the energy in the pure de Sitter spacetime. The thermal capacity of the charged de Sitter spacetime is positive, thus satisfying the thermal stability condition.  相似文献   

10.
S. Mignemi 《Annalen der Physik》2010,522(12):924-940
We discuss the generalization of Doubly Special Relativity to a curved de Sitter background. The model has three fundamental observer‐independent scales, the velocity of light c, the de Sitter radius α, and the Planck energy κ, and can be realized through a nonlinear action of the de Sitter group on a noncommutative position space. We consider different choices of coordinates on the de Sitter hyperboloid that, although equivalent, may be more suitable for treating different problems. Also the momentum space can be described as a hyperboloid embedded in a five‐dimensional space, but in this case different choices of coordinates lead to inequivalent models. We investigate the kinematics and the Hamiltonian dynamics of some specific models and describe some of their phenomenological consequences. Finally, we show that it is possible to construct a model exhibiting a duality for the interchange of positions and momenta together with the interchange of α and κ.  相似文献   

11.
Beltrami-de Sitter时空中标量和旋量粒子的量子理论   总被引:3,自引:0,他引:3       下载免费PDF全文
李光仪  郭汉英 《物理学报》1982,31(11):1501-1510
参照在Minkowski时空中,从粒子的相对论性经典理论过渡到量子理论,建立标量粒子和旋量粒子的相对论性波动方程的方案,在Beltrami-de Sitter时空中建立了de Sitter不变的标量粒子和旋量粒子的相对论性量子力学的基本方程,它们恰恰分别是Beltrami-de Sitter时空中的Klein-Gordon方程和Dirac方程。在Beltrami-anti de Sitter时空的同时类空超曲面簇上求解了这些方程,得到了分立的本征值和相应的本征函数。 关键词:  相似文献   

12.
The de Sitter spacetime is transitive under a combination of translations and proper conformal transformations. Its usual family of geodesics, however, does not take into account this property. As a consequence, there are points in de Sitter spacetime which cannot be joined to each other by any one of these geodesics. By taking into account the appropriate transitivity properties in the variational principle, a new family of maximizing trajectories is obtained, whose members are able to connect any two points of the de Sitter spacetime. These geodesics introduce a new notion of motion, given by a combination of translations and proper conformal transformations, which may possibly become important at very-high energies, where conformal symmetry plays a significant role.  相似文献   

13.
The fundamental equation of the thermodynamic system gives the relation between the internal energy, entropy and volume of two adjacent equilibrium states. Taking a higher-dimensional charged Gauss–Bonnet black hole in de Sitter space as a thermodynamic system, the state parameters have to meet the fundamental equation of thermodynamics. We introduce the effective thermodynamic quantities to describe the black hole in de Sitter space. Considering that in the lukewarm case the temperature of the black hole horizon is equal to that of the cosmological horizon, we conjecture that the effective temperature has the same value. In this way, we can obtain the entropy formula of spacetime by solving the differential equation. We find that the total entropy contains an extra term besides the sum of the entropies of the two horizons. The corrected term of the entropy is a function of the ratio of the black hole horizon radius to the cosmological horizon radius, and is independent of the charge of the spacetime.  相似文献   

14.
We recently constructed the R-Poincaré algebra from an appropriate deformed Poisson brackets which reproduce the Fock coordinate transformation. We showed then that the spacetime of this transformation is the de Sitter one. In this paper, we derive in the R-Minkowski spacetime the Dirac equation and show that this is none other than the Dirac equation in the de Sitter spacetime given by its conformally flat metric. Furthermore, we propose a new approach for solving Dirac’s equation in the de Sitter spacetime using the Schrödinger picture.  相似文献   

15.
In this paper we consider codimension two marginally trapped submanifolds in the family of general Robertson–Walker spacetimes. In particular, we derive some rigidity results for this type of submanifolds which guarantee that, under appropriate hypothesis, the only ones are those contained in slices. We also derive some interesting non-existence results for weakly trapped submanifolds. In particular, we give applications to some cases of physical relevance such as the Einstein-de Sitter spacetime and certain open regions of de Sitter spacetime, including the so called steady state spacetime. Our results will be an application of the (finite) maximum principle for closed manifolds and, more generally, of the weak maximum principle for stochastically complete manifolds.  相似文献   

16.
In this paper, we explore propagation of energy flux in the future Poincaré patch of de Sitter spacetime. We present two results. First, we compute the flux integral of energy using the symplectic current density of the covariant phase space approach on hypersurfaces of constant radial physical distance. Using this computation we show that in the tt-projection, the integrand in the energy flux expression on the cosmological horizon is same as that on the future null infinity. This suggests that propagation of energy flux in de Sitter spacetime is sharp. Second, we relate our energy flux expression in tt-projection to a previously obtained expression using the Isaacson stress-tensor approach.  相似文献   

17.
It is shown that the Nachtmann boosting method of introducing coordinates on de Sitter manifolds can be completed with suitable gauge transformations able to keep under control the transformation under isometries of the conserved quantities. With this method, the rest local charts (or natural frames) are defined pointing out the role of the conserved quantities in investigating the relative geodesic motion. The advantages of this approach can be seen from the applications presented here. For the first time, the simple kinematic effects, the electromagnetic field of a free falling charge and the binary fission are solved in terms of conserved quantities on the expanding portion of the de Sitter spacetime.  相似文献   

18.
We show that the Dirac equation is separable in the circularly symmetric metric in three dimensions and when the background spacetime is de Sitter we find exact solutions to the radial equations. Using these results we show that the de Sitter horizon has a cross section equal to zero for the massless Dirac field, as in the case of the scalar field. Also, using the improved brick wall model we calculate the fermionic entropy associated with the de Sitter horizon and we compare it with some results previously published.  相似文献   

19.
Modifying a method by Horowitz and Hubeny for asymptotically anti-de Sitter black holes, we establish the classical stability of the quasinormal modes of the de Sitter spacetime. Furthermore using a straightforward method we calculate the de Sitter quasinormal frequencies of the gravitational perturbations and discuss some properties of the radial functions of these quasinormal modes.  相似文献   

20.
In the framework of open quantum systems, we study the internal dynamics of both freely falling and static two-level atoms interacting with quantized conformally coupled massless scalar field in de Sitter spacetime. We find that the atomic transition rates depend on both the nature of de Sitter spacetime and the motion of atoms, interestingly the steady states for both cases are always driven to being purely thermal, regardless of the atomic initial states. This thermalization phenomenon is structurally similar to what happens to an elementary quantum system immersed in a thermal field, and thus reveals the thermal nature of de Sitter spacetime. Besides, we find that the thermal baths will drive the entanglement shared by the freely falling atom (the static atom) and its auxiliary partner, a same two-level atom which is isolated from external fields, to being sudden death, and the proper time for the entanglement to be extinguished is computed. We also analyze that such thermalization and disentanglement phenomena, in principle, could be understood from the perspective of table-top simulation experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号