首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Raman spectra of sol–gel derived Co‐doped ZnO nanoparticles (NPs) in the spectral range 100–1500 cm−1 were investigated. In the sol–gel method, three different series of Co‐doped ZnO particles, i.e. Zn1−xCoxO (x = 0.05, 0.10, 0.15, and 0.20), were obtained using three different starting precursors, viz. cobalt chloride hexahydrate, cobalt acetate tetrahydrate, and cobalt nitrate hexahydrate, respectively. It has been observed that cobalt acetate is a better precursor in comparison to cobalt chloride and cobalt nitrate to obtain single‐phase Co‐doped ZnO NPs. As for cobalt acetate‐derived NPs, no hidden secondary phase of Co3O4 was observed for the lower (x = 0.05) Co concentration. The Fröhlich interaction associated with the longitudinal modes was found to be destroyed with increasing Co concentration due to structural disorder and defects induced by the dopant. In addition to ZnO and Co3O4 vibrational modes, a few additional modes near 550 and 715 cm−1 were also observed in all cases, which could be attributed to the modes due to Co doping in ZnO. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
ZnO thin film with strong orientation (0 0 2) and smooth surface morphology was electrosynthesized on ITO-coated glass substrate at room temperature under pulsed voltage. Photoluminescence (PL) shows two obvious peaks: violet band and strong green band. The former is due to the free-excitonic transition and the latter is believed to arise from the single ionized oxygen vacancy (VO+). Raman scattering reveals that the 580 cm−1 mode and the shoulder peak mode at 550 cm−1 originate from the N-related local vibration mode (LVM) and E1 (LO) mode, respectively.  相似文献   

3.
Single-phase Zn1−xCoxO (x=0.02, 0.04) powders were synthesized by a simple co-precipitation technique. X-ray diffraction analysis reveals that the Co-doped ZnO crystallizes in a wurtzite structure. The lattice constants of Co-doped ZnO powders decrease slightly when Co is doped into ZnO. Optical absorption spectra show a decrease in the bandgap with increasing Co content and also give an evidence of the presence of Co2+ ions in tetrahedral sites. Raman spectra indicate that Co doping increased the lattice defects and induced another Raman vibration mode around at 538 cm−1, which is an indicator for the incorporation of Co2+ ions into the ZnO host matrix. Magnetic measurement reveals that the Zn1−xCoxO (x=0.02, 0.04) powders clearly exhibit room-temperature ferromagnetic behavior, which makes them potentially useful as building components for spintronics.  相似文献   

4.
Raman scattering has been used to study the influence of cobalt, an effective dopant to obtain SrTiO3 magnetic oxide, on the lattice dynamics of SrTiO3. It is found that Co doping increases the lattice defects and induces a Raman vibration mode of 690 cm−1. On the other hand, the ferromagnetism dependence on the x and annealing temperature was clearly and coherently observed in SrTi1−xCoxO3 (x = 0, 0.01, 0.03 and 0.05) nanoparticles. It is found that the ferromagnetism of SrTi1−xCoxO3 nanoparticles is weakly related to crystal deformation and oxygen vacancies in SrTiO3. So, F-center model can explain the origin of the ferromagnetism in the prepared Co-doped SrTiO3 samples. At the same time, the finding of large room-temperature ferromagnetism (1.6 emu/g) in this system would stimulate further interest in the area of more complicated ternary oxides.  相似文献   

5.
In the present paper, the preliminary investigations of a series of ZnO thin films co-doped with indium and cobalt with an objective to elucidate the correlation, if any, between the carrier concentration and the induced room temperature ferromagnetism (RTFM), are presented. The single-phasic (Zn99.5In0.5)1−xCoxO thin films are deposited by spray pyrolysis. The substitution of Zn2+ by Co2+ has been established by optical transmission analysis of these films. The films are ferromagnetic at room temperature; and the magnetization has higher value for indium and cobalt co-doped thin film as compared with Zn090Co0.1O thin film (having no indium).  相似文献   

6.
Phase pure Zn1?x Co x O thin films grown by pulsed laser deposition have transmittance greater than 75 % in the visible region. Raman studies confirm the crystalline nature of Zn1?x Co x O thin films. Zn0.95Co0.05O thin films show room temperature ferromagnetism with saturation magnetization of 0.4μ B /Co atom. The possible origin of paramagnetism at higher Co doping concentrations can be attributed to the increased nearest-neighbor antiferromagnetic interactions between Co2+ ions in ZnO matrix. XPS confirms the substitution of Co2+ ions into the ZnO host lattice.  相似文献   

7.
We measured the Raman spectra of ZnO nanoparticles (ZnO‐NPs), as well as transition‐metal‐doped (5% Mn(II), Fe(II) or Co(II)) ZnO nanoparticles, with an average size of 9 nm. A typical Raman peak at 436 cm−1 is observed in the ZnO‐NPs, whereas Zn1−xMnxO, Zn1−xFexO and Zn1−xCoxO presented characteristic peaks at 661, 665 and 675 cm−1, respectively. These peaks can be related to the formation of Mn3O4, Fe3O4 and Co3O4 species in the doped ZnO‐NPs. Moreover, these samples were analyzed at various laser powers. Here, we observed new vibrational modes (512, 571 and 528 cm−1), which are specific to Mn, Fe and Co dopants, respectively, and ZnO‐NPs did not reveal any additional modes. The new peaks were interpreted either as disorder activated phonon modes or as local vibrations of Mn‐, Fe‐ and Co‐related complexes in ZnO. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Modifications in the structural and optical properties of 100 MeV Ni7+ ions irradiated cobalt doped ZnO thin films (Zn1−xCoxO, x = 0.05) prepared by sol-gel route were studied. The films irradiated with a fluence of 1 × 1013 ions/cm2 were single phase and show improved crystalline structure with preferred C-axis orientation as revealed from XRD analysis. Effects of irradiation on bond structure of thin films were studied by FTIR spectroscopy. The spectrum shows no change in bonding structure of Zn-O after irradiation. Improved quality of films is further supported by FTIR studies. Optical properties of the pristine and irradiated samples have been determined by using UV-vis spectroscopic technique. Optical absorption spectra show an appreciable red shift in the band gap of irradiated Zn1−xCoxO thin film due to sp-d interaction between Co2+ ions and ZnO band electrons. Transmission spectra show absorption band edges at 1.8 eV, 2.05 eV and 2.18 eV corresponding to d-d transition of Co2+ ions in tetrahedral field of ZnO. The AFM study shows a slight increase in grain size and surface roughness of the thin films after irradiation.  相似文献   

9.
Influence of laser power on nanocrystalline samples of ZnO(Co) prepared by commonly used wet chemistry method followed by calcination was investigated. Previous confirmation of the existence of ZnO and Co3O4 phases was based on the X-ray diffraction measurements. Here we report the experimental spectra of non-resonant Raman scattering in the range between 100 cm−1 and 1600 cm–1, for a series of samples irradiated with four different laser power densities. The laser power density has different influence on relative intensity of peaks that belong to ZnO phase than on those corresponding to Co3O4 phase. Both peak types show characteristic broadening and red shift toward lower frequencies. The laser power densities used in our study did not cause thermal destruction in any of the investigated samples. Laser-induced local heating effects in samples caused formation of cobalt dimers on the surface of Co3O4.  相似文献   

10.
《Current Applied Physics》2014,14(5):749-756
The growth mechanism of Zn1−xCoxO (ZC) and Zn1−xFexO (ZF) nanorods, and resulting magnetic and optical properties have been studied. The ZC and ZF nanorods were prepared by sol–gel synthesis route. X-ray diffraction results in polycrystalline phase with wurtzite structure of ZC and ZF nanorods. The transmission electron microscopy images show the formation of nanorods. The growth mechanism of nanorods is explained on the basis of agglomeration of Zn2+ with OH ions which is react with poly vinyl alcohol involve anionic polymerization of oriented growth. Magnetic measurement of ZC and ZF nanorods exhibit superferromagnetic behavior and the large value of saturation magnetization observed at room temperature. The magnetization below room temperature measurement confirms the origin of observed magnetism. Raman and photoluminescence spectra show good photoactivity. The observed Raman active modes show wurtzite structure belongs to C6v symmetry group. Photoluminescence measurements of ZC and ZF nanorods exhibit ultraviolet peaks at 413.90 nm (∼3 eV) due to free exciton emission and at 546.31 nm (∼2.27 eV) due to transition from deep donor states which arises from oxygen vacancy.  相似文献   

11.
In this work, we present a detailed Raman scattering study to clarify the origin of the mode at 379 cm−1 which is observed in Raman spectra of the ZnO films grown on c‐sapphire substrates and generally attributed to the A1‐transverse optical (A1‐TO) mode of ZnO. The studied ZnO films were deposited by metal‐organic chemical vapor deposition on c‐sapphire and (0001) ZnO substrates. In the z(−,−)z̄ backscattering configuration, the A1‐TO mode is forbidden, while the 379 cm−1 peak is still observed in the as‐deposited film grown on sapphire substrate. However, this mode is not observed in Raman spectra of the as deposited film grown on ZnO substrate. We suggest that the peak at 379 cm−1 is the E1g mode of the sapphire substrate which is allowed in z(−,−)z̄ backscattering configuration. The effects of annealing, the substrate and the collection cross‐section on Raman active modes were analyzed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
《Current Applied Physics》2014,14(6):850-855
Transparent and conductive thin films of fluorine doped zinc tin oxide (FZTO) were deposited on glass substrates by radio-frequency (RF) magnetron sputtering using a 30 wt% ZnO with 70 wt% SnO2 ceramic targets. The F-doping was carried out by introducing a mixed gas of pure Ar, CF4, and O2 forming gas into the sputtering chamber while sputtering ZTO target. The effect of annealing temperature on the structural, electrical and optical performances of FZTO thin films has been studied. FZTO thin film annealed at 600 °C shows the decrease in resistivity 5.47 × 10−3 Ω cm, carrier concentration ∼1019 cm−3, mobility ∼20 cm2 V−1 s−1 and an increase in optical band gap from 3.41 to 3.60 eV with increasing the annealing temperatures which is well explained by Burstein–Moss effect. The optical transmittance of FZTO films was higher than 80% in all specimens. Work function (ϕ) of the FZTO films increase from 3.80 eV to 4.10 eV through annealing and are largely dependent on the amounts of incorporated F. FZTO is a possible potential transparent conducting oxide (TCO) alternative for application in optoelectronics.  相似文献   

13.
We report on the growth of cubic spinel ZnCo2O4 thin films by reactive magnetron sputtering and bipolarity of their conduction type by tuning of oxygen partial pressure ratio in the sputtering gas mixture. Crystal structure of zinc cobalt oxide films sputtered in an oxygen partial pressure ratio of 90% was found to change from wurtzite Zn1−xCoxO to spinel ZnCo2O4 with an increase of the sputtering power ratio between the Co and Zn metal targets, DCo/DZn, from 0.1 to 2.2. For a fixed DCo/DZn of 2.0 yielding single-phase spinel ZnCo2O4 films, the conduction type was found to be dependent on the oxygen partial pressure ratio: n-type and p-type for the oxygen partial pressure ratio below ∼70% and above ∼85%, respectively. The electron and hole concentrations for the ZnCo2O4 films at 300 K were as high as 1.37×1020 and 2.81×1020 cm−3, respectively, with a mobility of more than 0.2 cm2/V s and a conductivity of more than 1.8 S cm−1.  相似文献   

14.
Transition Metal (TM) ions V, Cr, Mn and Co were implanted into GaN/sapphire films at fluences 5×1014, 5×1015 and 5×1016 cm−2. First order Raman Scattering (RS) measurements were carried out to study the effects of ion implantation on the microstructure of the materials, which revealed the appearance of disorder and new phonon modes in the lattice. The variations in characteristic modes 1GaN i.e. E2(high) and A1(LO), observed for different implanted samples is discussed in detail. The intensity of nitrogen vacancy related vibrational modes appearing at 363 and 665 cm−1 was observed for samples having different fluences. A gallium vacancy related mode observed at 277/281 cm−1 for TM ions implanted at 5×1014 cm−2 disappeared for all samples implanted with rest of fluences. The fluence dependent production of implantation induced disorder and substitution of TM ions on cationic sites is discussed, which is expected to provide necessary information for the potential use of these materials as diluted magnetic semiconductors in future spintronic devices.  相似文献   

15.
AlxZn1−xO and GayZn1−yO ceramics were synthesized through a solid-state reaction technique. The crystal phase of the samples was identified by an X-ray diffraction experiment. For each sample, the electrical resistivity was determined. The Al 2-mol%-doped and Ga 0.5-mol%-doped ZnO ceramics had the lowest resistivity. Raman measurement was performed to study the doping effects in the ZnO ceramics including ZnO single crystal as a reference. The line-shape parameters, q1 and Γ1, at the same certain doping rate and the solubility limit of Al (2 mol%) and Ga (0.5 mol%) in ZnO ceramics, are strongly related to the each other, and that the solubility limit plays an important role. The second-order Raman peak at 1162 cm−1 of the ZnO ceramics was fitted by Fano formalism. The Fano’s fitting parameters, such as the lifetime of phonon and the degree of asymmetry degree of the second-order Raman peak changed as the amounts of dopants were varied.  相似文献   

16.
Raman spectra acquired from spherical SnO2 nanocrystals prepared by pulsed laser ablation and hydrothermal synthesis exhibit three oxygen‐vacancy‐related Raman modes at 234, 573, and 618 cm−1. The peak location and intensity vary with annealing temperature under O2 finally approaching those of bulk materials. Density functional calculation discloses that the three Raman modes stem from subbridging, in‐plane, and bridging oxygen vacancies, respectively. Raman spectra can thus be used to discern different types of oxygen vacancies in SnO2 nanocrystals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
CoxTi1−xO2−δ films have been prepared on Si(001) substrates by sol-gel method. When heat treated in air, CoxTi1−xO2−δ films are non-ferromagnetic at room temperature. However, after further vacuum annealing or hydrogenation, CoxTi1−xO2−δ films show room-temperature ferromagnetism (RTFM). When the vacuum annealed CoxTi1−xO2−δ films are reheated in air, the magnetic moments of the films strongly reduce. After these films are vacuum annealed once again, the magnetic moments are greatly enhanced, confirming the role of vacuum annealing in ferromagnetism of CoxTi1−xO2−δ films. The x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and measurements of magnetization (M) vs temperature (T) fail to detect Co clusters in the vacuum annealed and the hydrogenated CoxTi1−xO2−δ films. Oxygen vacancies are formed in CoxTi1−xO2−δ films after vacuum annealing and hydrogenation, determined by XRD and XPS measurements. These results indicate that oxygen vacancies created by vacuum annealing and hydrogenation play an important role in the generation of RTFM in CoxTi1−xO2−δ films.  相似文献   

18.
Transition metal and rare earth diffusion coefficients at 1323 K in Dy2−yNdy(Fe1−xCox)14B were determined by field emission energy dispersive spectroscopy compositional analysis of diffusion couple specimens. Various arrangements of component materials and temperatures were examined in order to understand the mechanisms affecting diffusion of the components and to predict the stability of functionally graded microstructures consisting of a dysprosium-rich (Dy2−yNdy(Fe1−xCox)14B) outer layer and a neodymium-rich (Nd2(Fe1−xCox)14B) interior. Estimates of the mutual interdiffusion coefficients of Dy, Nd, Fe, and Co in this system were obtained from the preparation of arc melted and annealed polycrystalline specimens, assuming that the diffusion coefficients were independent of concentration (Grube solution). Fifteen diffusion couples were prepared and heat treated at 1323 K for various times in order to provide data for calculation of the diffusion coefficients. The results indicate that the diffusion coefficients of Fe and Co (DFe=3.28×10−10 cm2/s and DCo=7.63×10−10 cm2/s) were significantly higher at 1323 K in this system than those for Dy and Nd (DNd=2.3×10−12 cm2/s and DDy=2.9×10−12 cm2/s).  相似文献   

19.
This article aims to investigate the Raman modes present in Mn‐doped ZnO thin films that are deposited using the magnetron co‐sputtering method. A broad band ranging from 500 to 590 cm−1 is present in the Raman spectra of heavily Mn‐doped ZnO films. The multi‐peak‐fitting results show that this broad band may be composed of six peaks, and the peak at 528 cm−1 could be a characteristic mode of Mn2O3. The results of this study suggest that the origin of the Raman peaks in Mn‐doped ZnO films may be due to three major types: structural disorder and morphological changes caused by the Mn dopant, Mn‐related oxides and intrinsic host‐lattice defects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
《Current Applied Physics》2014,14(3):521-527
Intrinsic defects in semiconductors play crucial roles on their electrical and optical properties. In this article, we report on a facile method to control concentration of oxygen vacancies inside ZnO nanostructures and related physical properties based on adjustment of thermal transformation conditions from ZnO2 to ZnO, including annealing atmosphere and temperature. ZnO2 spheres assembled with nanoparticles were formed through the reaction between zinc nitrate and hydrogen peroxide. Significantly, it was found that the adopted temperature and atmosphere have remarkable impact on the concentration of oxygen vacancies, which was revealed by the variations of featured Raman scattering peaks at 584 cm−1. Furthermore, with the increase of oxygen vacancies inside ZnO, the optical band-gap was found to red-shift 350 meV and the room-temperature ferromagnetism became stronger up to 1.6 emu/mg. The defect formation and evolution were discussed according to the chemical equilibrium of decomposition reaction under special local heating environment. This work demonstrated that ZnO2 decomposition is an effective process to control the defect states inside ZnO and related properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号