首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
半自由声场的全息重建和预测技术研究   总被引:4,自引:1,他引:3  
在半自由声场中,实际测量声压为直达声压和反射声压的叠加,而声压为标量,很难直接将其中直达声压成分分离出来,因而不能简单地用常规的方法来直接进行声源重建和声场预测。在充分地考虑到反射声压的情况下,建立了半自由声场环境下反射面为刚性和非刚性时的声场全息重建和预测理论模型,并通过实例验证了此模型的可行性和正确性。结果表明:此方法有效地解决了半自由声场中进行声场全息重建和预测时所存在的声压反射问题,从而扩充了声全息重建和预测技术的应用范围;采用分布源边界点法作为全息变换算法,提高了声全息重建和预测的速度、精度和稳定性。  相似文献   

2.
基于分布源边界点法的局部近场声全息技术   总被引:1,自引:0,他引:1       下载免费PDF全文
毕传兴  袁艳  贺春东  徐亮 《物理学报》2010,59(12):8646-8654
为了克服基于分布源边界点法的近场声全息技术在小全息孔径条件下造成的重建误差问题,提出了基于分布源边界点法的局部近场声全息技术.该技术运用分布源边界点法,采用测得的较小全息面上的声压数据来外推较大全息面上的声压数据,然后用外推的数据进行全息重建.仿真和实验结果验证了采用该技术在小全息孔径条件下进行声源局部重建的有效性.  相似文献   

3.
基于声压-振速测量的平面近场声全息实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
毕传兴  张永斌  徐亮  陈心昭 《物理学报》2010,59(2):1108-1115
常规的近场声全息均是采用全息面声压或质点振速作为输入量求解,由于采用单一输入量无法分离来自全息面背向声波的干扰,因此要求所有声源均位于全息面的同一侧,即测量声场为自由声场,这种要求大大限制了近场声全息的实际应用.基于声压-速度测量的近场声全息以全息面上声压和质点振速同时作为输入量,通过建立和求解两侧声源在全息面上的声压和质点振速耦合关系,可以实现全息面两侧声波的分离,从而解决上述问题.文中在前期对声场分离技术研究的基础上,基于欧拉公式和有限差分近似,推导了新的基于声压-速度测量的平面近场声全息理论公式.随后通过实验检验了该方法在有背景源干扰情况下实现声场分离和重建的有效性.  相似文献   

4.
联合波叠加法的全息理论与实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
李卫兵  陈剑  毕传兴  陈心昭 《物理学报》2006,55(3):1264-1270
当空间声场中同时存在多个相干声源时,运用常规近场声全息方法无法重建每个相干声源表面的声学信息,当然也无法预测每个声源单独产生的空间声场,相干声场的全息重建与预测已成为全息技术推广应用过程中亟待解决的问题.在提出联合波叠加法并将其应用于空间声场变换的基础上,对其进行了实验研究.通过对实际相干声场的全息重建与预测,验证了常规波叠加法在相干声场重建中的局限性、联合波叠加法在相干声场全息重建与预测过程的可行性和准确性,还研究了Tikhonov正则化方法在抑制声学逆问题的非适定性中的有效性和滤波系数的选择原则的可行性,以提高全息重建与预测的精度. 关键词: 近场声全息 联合波叠加 相干声场 Tikhonov正则化  相似文献   

5.
胡定玉  李再帏  方宇 《声学学报》2017,42(4):465-475
为消除在非自由声场中重建声场时干扰声源对重建效果的影响,提出一种采用单个测量面上的声压和质点振速作为输入、等效源法作为分离和重建算法的非自由声场中目标声场还原与重建方法。该方法首先利用单面声压-质点振速测量和基于等效源法的声场分离技术将测量的混合声场分离为来自目标声源的向外传播的声场和来自干扰声源的向内传播的声场,然后利用向内传播的声场和目标声源的边界条件计算出干扰声在目标声源表面产生的散射声场,并将其从向外传播的声场中去除,还原出目标声源在自由声场条件下的辐射声场,最后利用还原的声场实现目标声场重建。通过数值仿真和实验检验了该方法的有效性和必要性。仿真和实验的结果表明,该方法可以在非自由声场的测量条件下,有效地去除干扰声的影响,实现目标声场的准确重建。   相似文献   

6.
声场分离技术及其在近场声全息中的应用   总被引:6,自引:0,他引:6       下载免费PDF全文
于飞  陈剑  李卫兵  陈心昭 《物理学报》2005,54(2):789-797
提出空间声场分离技术,突破了近场声全息(NAH)的应用局限.它们的局限在于全息面一侧的声场必须是自由声场,即要求所有的声源必须位于另一侧.利用波数域内的波场外推理论及声压的标量叠加原理,建立起声场分离技术的双全息面实现方法,利用波数域内的Euler公式及粒子振速的矢量叠加原理,建立起该技术的单全息面实现方法.该技术的一个突出优点是在具有背景噪声的全息测量情况下, 可以消除背景噪声对全息变换结果的影响.理论的推导表明该技术方法的正确性,而仿真算例和实验则显示该技术的可行性和有效性. 关键词: 声全息 波数域 声场分离 背景噪声  相似文献   

7.
在原有的平面循环平稳近场声全息基础上,提出一种基于波叠加法的循环平稳近场声全息技术,可以对具有复杂表面的声源进行全息重建,重建的声源表面声压谱相关密度函数能反映出调制信号的信息.声源表面声压谱相关密度函数全息图形象地反映了调制信号在表面的强弱分布情况,可由此确定调制信号源的产生位置.仿真分析和实验验证表明,基于波叠加法的循环平稳近场声全息技术可以更准确地反映循环平稳声场的调制特性.该方法继承了波叠加法的优点,无需计算边界奇异积分,计算效率高、精度好.  相似文献   

8.
为解决非自由声场中近场声全息重建时,干扰声在目标声源表面产生的散射影响,提出一种基于球面波叠加法的自由场还原技术。该技术首先采用基于球面波叠加法的声场分离技术获得向内和向外传播的声场,然后以目标声源的表面导纳作为边界条件,实现目标声源辐射声和散射声的分离,从而获得等效于自由声场的测量条件。该技术为准确实现非自由声场中的噪声源识别创造了条件。文中首先详细描述了该技术的基本原理,并提出一种最优球面波展开项数选取方法,最后通过数值仿真说明了该技术的有效性。结果表明:在频率较低时,散射声影响较小,采用声场分离技术和自由场还原技术效果相当;但随着频率升高,散射声影响逐步增强,必须采用自由场还原技术才能准确获得目标声源辐射声。  相似文献   

9.
张海滨  蒋伟康  万泉 《物理学报》2008,57(1):313-321
在原有的平面循环平稳近场声全息基础上,提出一种基于波叠加法的循环平稳近场声全息技术,可以对具有复杂表面的声源进行全息重建,重建的声源表面声压谱相关密度函数能反映出调制信号的信息.声源表面声压谱相关密度函数全息图形象地反映了调制信号在表面的强弱分布情况,可由此确定调制信号源的产生位置.仿真分析和实验验证表明,基于波叠加法的循环平稳近场声全息技术可以更准确地反映循环平稳声场的调制特性.该方法继承了波叠加法的优点,无需计算边界奇异积分,计算效率高、精度好. 关键词: 近场声全息 循环平稳信号 波叠加  相似文献   

10.
半空间中声源直接辐射声场重构的实施需要构造以边界声阻抗为参量的半空间基函数,边界声阻抗的获取则通常需要借助原位测量方法.基于半空间球面波基函数叠加的声场重构方法,通过在声源近场布置全息测量面和一支参考传声器采集声压,并以参考传声器声压重构误差取得最小值为准则,估算各全息测点的声压反射系数,就能在边界阻抗未知条件下实现声源直接辐射声压的重构,从而摆脱了常规方法对声阻抗原位测量技术的依赖.本文的目的是对这一方法进行详细的参数讨论,并在估算声压反射系数的基础上,进一步对边界声阻抗加以重构,提出一种基于近场声全息的声阻抗测量方法.以球形声源为例,对声阻抗和声源直接辐射声压的重构进行了仿真,定量地分析参考传声器坐标、边界有效流阻率和边界孔隙度随深度的降低率等参数对重构精度的影响.  相似文献   

11.
Recently, NAH has been developed as an efficient tool for noise identification, noise localization and acoustic field visualization. Compared with the traditional acoustic ra-diation calculation problem, the solving problem in the NAH is an inverse acoustic problem. By measuring partial acoustic field information, such as complex pressures or particle velocities on the hologram surface, but not the surface normal velocities of the vibrating body, the surface information can be reconstructed,…  相似文献   

12.
声学温度场检测技术通过多路径声波传播时间数据,反演被测区域的温度分布。提供了一种高精度的三维复杂温度场的声学测量方法。首先从射线声学角度给出了三维非均匀温度场中声波传播路径的数学模型。在此基础上,将三维温度场的重建问题转化为声波传播路径的求解和温度场的反演问题,建立了基于多项式修正径向基函数(RBF-PR)和改进的Tikhonov正则化三维温度场重建算法。采用两种典型的炉膛三维温度场模型,在信噪比SNR=35 dB下进行了数值模拟,分析了声波传播路径在非均匀温度场中的弯曲特性、算法的重建质量和抗噪性,同时进行了实际炉膛内二维温度场的重建。结果表明了提出的考虑声线弯曲的温度场重建算法具有精度高,抗噪性强、适用性好的特点,为实现高精度的复杂温度场的声学测量提供了有效方法。   相似文献   

13.
To realize the accurate reconstruction of sound field in a moving medium under the condition of limited holographic aperture, a patch nearfield acoustic holography (NAH) in a moving medium is proposed. The proposed method not only reduces the influence caused by the limited aperture effects through sound field extrapolation, but also perfectly suits for sound field reconstruction in a moving medium by improving the shape of the modified Tikhonov regularization filter and the noise estimation method in accordance with flow effects. In the method, two cases that the flow direction is parallel to and perpendicular to the hologram surface are considered. Especially in the perpendicular case, the expression of the wavenumber component in the z direction is improved to make the proposed method suitable for the moving medium at a high Mach number. Simulations are investigated to examine the performance of the proposed method and show its advantages by comparing with NAH in a moving medium and the conventional patch NAH. It is found that, the proposed method is effective and robust at different flow velocities of the medium and different frequencies of the sound source.  相似文献   

14.
利用源强密度声辐射模态重建声场   总被引:3,自引:0,他引:3       下载免费PDF全文
聂永发  朱海潮 《物理学报》2014,63(10):104303-104303
为了利用声场中少量测点声压数据精确重建复杂结构的辐射声场,提出了源强密度声辐射模态分析理论和声场重建公式.在结构表面定义的空间上,利用以源强密度分布函数为参量的结构辐射声功率泛函表达式定义了一个线性自伴正辐射算子,该算子的特征函数为结构的源强密度声辐射模态.然后通过对矩形平板和带有半球帽的圆柱体的源强密度声辐射模态的分析,证明了源强密度声辐射模态具有空间滤波特性,并利用该性质建立了声场重建公式.球体仿真和平板实验验证了所提出的声场重建方法的可行性和稳健性.基于源强密度声辐射模态的声场重建方法简单,利用较少测点数据就可以获得较高的声场重建精度,特别适合于复杂结构的低频声场重建.  相似文献   

15.
One method for deducing the strength of an acoustic source distribution from measurement of the radiated field involves the inversion of the matrix of frequency response functions relating the field measurement points to the strengths of a number of point sources used to represent the source distribution. In practice, the frequency response function matrix to be inverted may very often be ill-conditioned. This ill-conditioning will also often result in an ill-posed problem and thus regularization algorithms are used to produce reasonable solutions. For this purpose, Tikhonov regularization has been applied, and generalized cross-validation (GCV) has been introduced as an effective method for determining the proper amount of regularization without prior knowledge of either the source distribution or the contaminating errors. In the present work, the emphasis is placed on the relationship between the spatial resolution of the reconstructed source distribution and the small singular values of the frequency response function matrix to be inverted. However, the use of Tikhonov regularization often suppresses the effect of small singular values and these are in turn often associated with high spatial frequencies of the source distribution. Thus, the process of regularization produces a useful estimate of the acoustic source strength distribution but with a limited spatial resolution. Furthermore, in the field of Fourier acoustics, the spatial resolution of the reconstructed source distribution is usually limited by the wavelength of the radiation. This paper expresses the relationship between estimation accuracy, spatial resolution, noise-level and source/sensor geometry, when a range of inverse sound radiation problems are regularised using Tikhonov regularization with GCV. The results presented form the basis of guidelines that enable the reconstruction of acoustic source strength with a resolution that is finer than the intrinsic half-wavelength limit.  相似文献   

16.
Transient nearfield acoustic holography based on an interpolated time-domain equivalent source method (ESM) is proposed to reconstruct transient acoustic fields directly in the time domain. Since the equivalent source strengths solved by the traditional time-domain ESM formulation cannot be used to reconstruct the pressure on the source surface directly, an interpolation function is introduced to develop an interpolated time-domain ESM formulation which permits one to deduce an iterative reconstruction process. As the reconstruction process is ill-conditioned and especially there exists a cumulative effect of errors, the Tikhonov regularization is used to stabilize the process. Numerical examples of reconstructing transient acoustic fields from a baffled planar piston, an impulsively accelerating sphere and a cube box, respectively, demonstrate that the proposed method not only can effectively reconstruct transient acoustic fields in the time domain, but also can visualize acoustic fields in the space domain. And, in the first numerical example, the cumulative effect of errors and the validity of using the Tikhonov regularization to suppress the errors are described.  相似文献   

17.
The routine wave superposition approach cannot be used in reconstruction and prediction of a coherent acoustic field, because it is impossible to separate the pressures generated by individual sources. According to the superposition theory of the coherent acoustic field , a novel method based on the combined wave superposition approach is developed to reconstruct and predict the coherent acoustic field by building the combined pressure matching matrixes between the hologram surfaces and the sources. The method can reconstruct the acoustic information on surfaces of the individual sources, and it is possible to predict the acoustic field radiated from every source and the total coherent acoustic field can also be calculated spontaneously. The experimental and numerical simulation results show that this method can effectively solve the holographic reconstruction and prediction of the coherent acoustic field and it can also be used as a coherent acoustic field separation technique. The study on this novel method extends the application scope of the acoustic holography technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号