首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Results were obtained from three paradigms used to study cross-spectral processing of envelope modulation [comodulation masking release (CMR), comodulation detection difference (CDD), and modulation detection interference (MDI)]. When tonal carriers separated by two octaves (flanking tone at 1000 Hz and target tone at 4000 Hz) were amplitude modulated at 20 Hz, there was no evidence of a cMR or CDD effect, but there was substantial MDI.  相似文献   

2.
The presence of amplitude fluctuations in one frequency region can interfere with our ability to detect similar fluctuations in another (remote) frequency region. This effect is known as modulation detection interference (MDI). Gating the interfering and target sounds asynchronously is known to lead to a reduction in MDI, presumably because the two sounds become perceptually segregated. The first experiment examined the relative effects of carrier and modulator gating asynchrony in producing a release from MDI. The target carrier was a 900-ms, 4.3-kHz sinusoid, modulated in amplitude by a 500-ms, 16-Hz sinusoid, with 200-ms unmodulated fringes preceding and following the modulation. The interferer (masker) was a 1-kHz sinusoid, modulated by a narrowband noise with a 16-Hz bandwidth, centered around 16 Hz. Extending the masker carrier for 200 ms before and after the signal carrier reduced MDI, regardless of whether the target and masker modulators were gated synchronously or were gated with onset and offset asynchronies of 200 ms. Similarly, when the carriers were gated synchronously, asynchronous gating of the modulators did not produce a release from MDI. The second experiment measured MDI with a synchronous target and masker and investigated the effect of adding a series of precursor tones, which were designed to promote the forming of a perceptual stream with the masker, thereby leaving the target perceptually isolated. Four modulated or unmodulated precursor tones presented at the masker frequency were sufficient to completely eliminate MDI. The results support the idea that MDI is due to a perceptual grouping of the masker and target, and show that conditions promoting sufficient perceptual segregation of the masker and target can lead to a total elimination of MDI.  相似文献   

3.
Modulation masking: effects of modulation frequency, depth, and phase   总被引:1,自引:0,他引:1  
Modulation thresholds were measured for a sinusoidally amplitude-modulated (SAM) broadband noise in the presence of a SAM broadband background noise with a modulation depth (mm) of 0.00, 0.25, or 0.50, where the condition mm = 0.00 corresponds to standard (unmasked) modulation detection. The modulation frequency of the masker was 4, 16, or 64 Hz; the modulation frequency of the signal ranged from 2-512 Hz. The greatest amount of modulation masking (masked threshold minus unmasked threshold) typically occurred when the signal frequency was near the masker frequency. The modulation masking patterns (amount of modulation masking versus signal frequency) for the 4-Hz masker were low pass, whereas the patterns for the 16- and 64-Hz maskers were somewhat bandpass (although not strictly so). In general, the greater the modulation depth of the masker, the greater the amount of modulation masking (although this trend was reversed for the 4-Hz masker at high signal frequencies). These modulation-masking data suggest that there are channels in the auditory system which are tuned for the detection of modulation frequency, much like there are channels (critical bands or auditory filters) tuned for the detection of spectral frequency.  相似文献   

4.
Spectro-temporal processing in the envelope-frequency domain   总被引:1,自引:0,他引:1  
The frequency selectivity for amplitude modulation applied to tonal carriers and the role of beats between modulators in modulation masking were studied. Beats between the masker and signal modulation as well as intrinsic envelope fluctuations of narrow-band-noise modulators are characterized by fluctuations in the "second-order" envelope (referred to as the "venelope" in the following). In experiment 1, masked threshold patterns (MTPs), representing signal modulation threshold as a function of masker-modulation frequency, were obtained for signal-modulation frequencies of 4, 16, and 64 Hz in the presence of a narrow-band-noise masker modulation, both applied to the same sinusoidal carrier. Carrier frequencies of 1.4, 2.8, and 5.5 kHz were used. The shape and relative bandwidth of the MTPs were found to be independent of the signal-modulation frequency and the carrier frequency. Experiment 2 investigated the extent to which the detection of beats between signal and masker modulation is involved in tone-in-noise (TN), noise-in-tone (NT), and tone-in-tone (TT) modulation masking, whereby the TN condition was similar to the one used in the first experiment. A signal-modulation frequency of 64 Hz, applied to a 2.8-kHz carrier, was tested. Thresholds in the NT condition were always lower than in the TN condition, analogous to the masking effects known from corresponding experiments in the audio-frequency domain. TT masking conditions generally produced the lowest thresholds and were strongly influenced by the detection of beats between the signal and the masker modulation. In experiment 3, TT masked-threshold patterns were obtained in the presence of an additional sinusoidal masker at the beat frequency. Signal-modulation frequencies of 32, 64, and 128 Hz, applied to a 2.8-kHz carrier, were used. It was found that the presence of an additional modulation at the beat frequency hampered the subject's ability to detect the envelope beats and raised thresholds up to a level comparable to that found in the TN condition. The results of the current study suggest that (i) venelope fluctuations play a similar role in modulation masking as envelope fluctuations do in spectral masking, and (ii) envelope and venelope fluctuations are processed by a common mechanism. To interpret the empirical findings, a general model structure for the processing of envelope and venelope fluctuations is proposed.  相似文献   

5.
When a signal is higher in frequency than a narrow-band masker, thresholds are lower when the masker envelope fluctuates than when it is constant. This article investigates the cues used to achieve the lower thresholds, and the factors that influence the amount of threshold reduction. In experiment I the masker was either a sinusoid (constant envelope) or a pair of equal-amplitude sinusoids (fluctuating envelope) centered at the same frequency as the single sinusoid (250, 1000, 3000, or 5275 Hz). The signal frequency was 1.8 times the masker frequency. At all center frequencies, thresholds were lower for the two-tone masker than for the sinusoidal masker, but the effect was smaller at the highest and lowest frequencies. The reduced effect at high frequencies is attributed to the loss of a cue related to phase locking in the auditory nerve. The reduced effect at low frequencies can be partly explained by reduced slopes of the growth-of-masking functions. In experiment II the masker was a sinusoid amplitude modulated at an 8-Hz rate. Masker and signal frequencies were the same as for the first experiment. Randomizing the modulation depth between the two halves of a forced-choice trial had no effect on thresholds, indicating that changes in modulation depth are not used as a cue for signal detection. Thresholds in the modulated masker were higher than would be predicted if they were determined only by the masker level at minima in the envelope, and the threshold reduction produced by modulating the master envelope was less at 250 Hz than at higher frequencies. Experiments III and IV reveal two factors that contribute to the reduced release from masking at low frequencies: The rate of increase of masked threshold with decreasing duration is greater at 250 Hz than at 1000 Hz; the amount of forward masking, relative to simultaneous masking, is greater at 250 Hz than at 1000 Hz. The results are discussed in terms of the relative importance of across-channel cues and within-channel cues.  相似文献   

6.
These experiments were intended to determine whether comodulation masking release (CMR) occurs for maskers that are modulated in frequency rather than in amplitude. In experiment I, thresholds for a sinusoidal signal were measured in the presence of two continuous sinusoidal maskers: one was centered at the signal frequency (1.0 kHz), and the other was positioned at flanking frequencies ranging from 0.5 to 2.0 kHz. The two maskers were frequency modulated (FM) by the same low-pass-noise modulator (correlated condition) or by independent noise modulators (uncorrelated condition). Thresholds were the same for the correlated and uncorrelated maskers, i.e., no CMR occurred. This was also true when the flanking band was presented in the ear opposite to that containing the signal and the on-frequency masking band. In experiment II, 25-Hz-wide noise maskers were used. The on-frequency band was sinusoidally frequency modulated, while the off-frequency band either had the same FM or no FM. Thresholds were similar for the two conditions, again indicating that no CMR occurred. The results suggest that, unlike amplitude modulation, correlated FM of the masker in different frequency bands does not give rise to a release from masking.  相似文献   

7.
Temporal auditory acuity, the ability to discriminate rapid changes in the envelope of a sound, is essential for speech comprehension. Human envelope following responses (EFRs) recorded from scalp electrodes were evaluated as an objective measurement of temporal processing in the auditory nervous system. The temporal auditory acuity of older and younger participants was measured behaviorally using both gap and modulation detection tasks. These findings were then related to EFRs evoked by white noise that was amplitude modulated (25% modulation depth) with a sweep of modulation frequencies from 20 to 600 Hz. The frequency at which the EFR was no longer detectable was significantly correlated with behavioral measurements of gap detection (r = -0.43), and with the maximum perceptible modulation frequency (r = 0.72). The EFR techniques investigated here might be developed into a clinically useful objective estimate of temporal auditory acuity for subjects who cannot provide reliable behavioral responses.  相似文献   

8.
Ultrasonic vibration generates a sensation of sound via bone-conduction. This phenomenon is called bone-conducted ultrasonic (BCU) hearing. Complex sounds can also be perceived by amplitude-modulating a BCU stimulus (AM-BCU). The influence of the modulation frequency on the sensitivity to detecting amplitude modulation of sinusoidal carriers of 10, 20, and 30 kHz was examined to clarify the characteristics of the perception of amplitude modulation over the sonic or audio-frequency range and the ultrasonic range. In addition, the detection sensitivity for single-sideband modulation for a 20 kHz carrier was measured. Temporal modulation transfer functions (TMTFs) obtained at each carrier frequency suggest that the auditory system has the ability to process timing information in the envelopes of AM-BCUs at lower modulation frequencies, as is the case with audio-frequency sounds. The possible influence of peripheral filtering on the shape of the TMTF at higher frequencies was examined.  相似文献   

9.
An auditory interaction between the temporal fine structure of a low-frequency tone and the envelope of a high-frequency waveform was observed at very large frequency separations. Thresholds for detection of sinusoidal amplitude modulation of a high-frequency, narrow-band noise were measured as a function of the relative phase between the modulator and a pure tone with the same frequency as the modulator. These "phase functions" were determined at various intensities of the noise and tone for three different modulation frequencies. In general, the phase functions show that low-frequency stimulation has a cyclic effect on the sensitivity to amplitude modulation; over a limited range of relative phases, the modulation threshold is lower than that measured without low-frequency stimulation whereas over a broader range of relative phases, the modulation threshold is much higher. The difference between minimum and maximum modulation thresholds was observed to be as great as 23 dB. Despite this substantial degree of temporal interaction, little, if any, masking by the low-frequency tone of the high-frequency noise was observed.  相似文献   

10.
The thresholds of masking of short high-frequency pulses with either different durations (1.25–25 ms) and similar central frequency or different central frequencies (3.6–4.4 kHz) but similar durations were measured to reveal manifestations of the properties of peripheral encoding in auditory perception. Noises with a spiked amplitude spectrum structure were used as maskers. The central frequency and the frequency band of a masker were 4 and 1 kHz, respectively. The central frequencies of a stimulus and a masker being equal, the noise the central frequency of which coincided with the frequency corresponding to a dip of an indented spectrum was called an off(rip)-frequency masker. Owing to the off(rip)-masker, stimuli-induced masking thresholds were formed taking into account excitation in a narrow region of a basila membrane and auditory nerve fibers with characteristic frequencies from a narrow range. High-frequency pulses with an envelope in the form of the Gaussian function and sinusoidal filling were used as stimuli. At masker levels of 30 dB above the auditory threshold, frequencies of off(rip)-masker spectra spikes of 500–2000 Hz, and a central stimulus frequency of 4 kHz, the thresholds of tonal stimuli (25 ms in duration) masking in two out of three probationers were higher than the thresholds of masking of compact stimuli (1.25 ms in duration). In the third probationer, on the contrary, the thresholds of tonal stimuli masking were lower than the thresholds of compact stimuli masking. At masker levels of 50 dB, individual threshold differences disappeared. The obtained results were interpreted in the context of implementation of different methods of auditory encoding of the intensity. The methods were based on either the average frequency of auditory nerve pulsations or the number of fibers participating in the response. The interpretation was also carried out in the context of revealing manifestations of nonlinear properties of basila membrane displacements in auditory thresholds. The fact that the dependence of detection thresholds of compact stimuli on their central frequency in one of the two probationers did not reveal the minimum in case of coincidence of off(rip)-masker and stimulus frequencies pointed to the presence of an auditory “problem zone” that was likely to be localized at the periphery of the auditory system.  相似文献   

11.
Steady state responses to the sinusoidal modulation of the amplitude or frequency of a tone were recorded from the human scalp. For both amplitude modulation (AM) and frequency modulation (FM), the responses were most consistent at modulation frequencies between 30 and 50 Hz. However, reliable responses could also be recorded at lower frequencies, particularly at 2-5 Hz for AM and at 3-7 Hz for FM. With increasing modulation depth at 40 Hz, both the AM and FM response increased in amplitude, but the AM response tended to saturate at large modulation depths. Neither response showed any significant change in phase with changes in modulation depth. Both responses increased in amplitude and decreased in phase delay with increasing intensity of the carrier tone, the FM response showing some saturation of amplitude at high intensities. Both responses could be recorded at modulation depths close to the subjective threshold for detecting the modulation and at intensities close to the subjective threshold for hearing the stimulus. The responses were variable but did not consistently adapt over periods of 10 min. The 40-Hz AM and FM responses appear to originate in the same generator, this generator being activated by separate auditory systems that detect changes in either amplitude or frequency.  相似文献   

12.
Comodulation masking release for a 700-Hz pure-tone signal was investigated as a function of the number and spectral positions of 20-Hz-wide comodulated flanking bands. In the first experiment, all stimuli were presented diotically. CMR was examined as a function of the number of flanking bands present, in conditions where the bands were arranged symmetrically around the signal frequency, were below the signal frequency, or were above the signal frequency. The number of flanking bands ranged from one to eight, and the magnitude of the diotic CMR ranged from approximately 5-16 dB. The results indicated: (1) bands closer to the signal resulted in larger masking release, and (2) more bands gave rise to larger CMR (but with diminishing returns above two flanking bands). Two additional sets of diotic conditions were examined and compared to the condition where all eight comodulated flanking bands were present: In one set of conditions, two of the eight flanking bands were removed; in the other set of conditions, two of the eight flanking bands were replaced with bands (termed "deviant" bands) that were not comodulated with respect to the other bands. There was very little effect of reducing eight bands to six, even when the removed bands were relatively near the signal frequency; however, CMR was substantially reduced when deviant bands were introduced, particularly when the deviant bands were placed relatively near the signal frequency. These reductions in CMR were slightly greater when each of the deviant bands had a unique modulation pattern (bideviant bands) than when the two deviant bands themselves shared the same modulation pattern (codeviant bands). In the second experiment, dichotic conditions were examined where the number and spectral positions of the flanking bands in the nonsignal ear were varied (the signal ear received only a 20-Hz-wide noise band centered on the signal frequency). The magnitude of the dichotic CMR ranged from approximately 2-10 dB, depending on condition. Effects of proximity and the number of flanking bands were similar to the effects obtained in diotic conditions. For both the diotic and the dichotic data, the effects of proximity were more consistent with an interpretation based upon across-channel processing than upon a within-channel interaction. The results obtained using deviant bands indicate that it is difficult for the auditory system to disregard the modulation pattern of flanking bands that differ from the modulation pattern of the on-signal band, particularly if such bands are proximal to the signal frequency.  相似文献   

13.
Howard-Jones and Rosen [(1993). J. Acoust. Soc. Am. 93, 2915-2922] investigated the ability to integrate glimpses of speech that are separated in time and frequency using a "checkerboard" masker, with asynchronous amplitude modulation (AM) across frequency. Asynchronous glimpsing was demonstrated only for spectrally wide frequency bands. It is possible that the reduced evidence of spectro-temporal integration with narrower bands was due to spread of masking at the periphery. The present study tested this hypothesis with a dichotic condition, in which the even- and odd-numbered bands of the target speech and asynchronous AM masker were presented to opposite ears, minimizing the deleterious effects of masking spread. For closed-set consonant recognition, thresholds were 5.1-8.5?dB better for dichotic than for monotic asynchronous AM conditions. Results were similar for closed-set word recognition, but for open-set word recognition the benefit of dichotic presentation was more modest and level dependent, consistent with the effects of spread of masking being level dependent. There was greater evidence of asynchronous glimpsing in the open-set than closed-set tasks. Presenting stimuli dichotically supported asynchronous glimpsing with narrower frequency bands than previously shown, though the magnitude of glimpsing was reduced for narrower bandwidths even in some dichotic conditions.  相似文献   

14.
Canahl [J. Acoust. Soc. Am. 50, 471-474 (1971)] measured thresholds for a 1.0-kHz sinusoid masked either by two or by four surrounding tones. He reported four-tone masked thresholds that exceeded, by 5-7.5 dB, the energy sum of the masking produced by the individual tone pairs. The present paper reports on a series of experiments investigating the effects of several factors on this 5-7.5 dB "excess" masking. In each experiment, thresholds for a 1.0-kHz 250-ms sinusoid were measured as a function of the overall level of two or four equal amplitude sinusoids with frequencies arithmetically centered around 1.0 kHz. For conditions similar to those of the Canahl experiment, 5-6 dB of excess masking was obtained independent of the level of the masking tones. Randomly varying overall level across presentations had no effect on the excess masking. The excess masking was reduced or eliminated when the masking tones were generated using an amplitude modulation technique, when they were gated on and off with the signal, or when their waveshapes were fixed across trials. Canahl's result may reflect listeners' ability to detect the signal as a change in the waveshape of the multitone masker.  相似文献   

15.
This study presents an auditory processing model that accounts for the perceptual phenomenon of comodulation masking release (CMR). The model includes an equalization-cancellation (EC) stage for the processing of activity across the audio-frequency axis. The EC process across frequency takes place at the output of a modulation filterbank assumed for each audio-frequency channel. The model was evaluated in three experimental conditions: (i) CMR with four widely spaced flanking bands in order to study pure across-channel processing, (ii) CMR with one flanking band varying in frequency in order to study the transition between conditions dominated by within-channel processing and those dominated by across-channel processing, and (iii) CMR obtained in the "classical" band-widening paradigm in order to study the role of across-channel processing in a condition which always includes within-channel processing. The simulations support the hypothesis that within-channel contributions to CMR can be as large as 15 dB. The across-channel process is robust but small (about 2-4 dB) and only observable at small masker bandwidths. Overall, the proposed model might provide an interesting framework for the analysis of fluctuating sounds in the auditory system.  相似文献   

16.
A simultaneous masking procedure was used to derive four measures of frequency selectivity in the chinchilla. The first experiment measured critical masking ratios (CRs) at various signal frequencies. Estimates of the chinchillas' critical bandwidths derived from the CRs were much broader than comparable human estimates, indicating that the chinchilla may have inferior frequency selectivity. The second experiment measured critical bandwidths at 1, 2, and 4 kHz in a band-narrowing experiment. This technique yielded narrower estimates of critical bandwidth; however, chinchillas continued to exhibit poor frequency selectivity compared to man. The third experiment measured auditory-filter shape at 0.5, 1, and 2 kHz via rippled noise masking. Results of the rippled noise masking experiment indicate that auditory filters of humans and chinchillas are similar in terms of shape and bandwidth with chinchillas showing only slightly poorer frequency selectivity. The final experiment measured auditory filter shape at 0.5, 1, 2, and 4 kHz using notched noise masking. This experiment yielded auditory filter shapes and bandwidths similar to those derived from man. The discrepancy between the indirect estimates of frequency selectivity derived from CR and band-narrowing techniques and the direct estimates derived from rippled noise and notched noise masking are explained by taking into account the processing efficiency of the subjects.  相似文献   

17.
Auditory processing appears to include a series of domain-specific filtering operations that include tuning in the audio-frequency domain, followed by tuning in the temporal modulation domain, and perhaps tuning in the spectral modulation domain. To explore the possibility of tuning in the spectral modulation domain, a masking experiment was designed to measure masking patterns in the spectral modulation domain. Spectral modulation transfer functions (SMTFs) were measured for modulation frequencies from 0.25 to 14 cycles/octave superimposed on noise carriers either one octave (800-1600 Hz, 6400-12,800 Hz) or six octaves wide (200-12,800 Hz). The resulting SMTFs showed maximum sensitivity to modulation between 1 and 3 cycles/octave with reduced sensitivity above and below this region. Masked spectral modulation detection thresholds were measured for masker modulation frequencies of 1, 3, and 5 cycles/octave with a fixed modulation depth of 15 dB. The masking patterns obtained for each masker frequency and carrier band revealed tuning (maximum masking) near the masker frequency, which is consistent with the theory that spectral envelope perception is governed by a series of spectral modulation channels tuned to different spectral modulation frequencies.  相似文献   

18.

Background  

Auditory evoked responses can be modulated by both the sequencing and the signal-to-noise ratio of auditory stimuli. Constant sequencing as well as intense masking sounds basically lead to N1m response amplitude reduction. However, the interaction between these two factors has not been investigated so far. Here, we presented subjects tone stimuli of different frequencies, which were either concatenated in blocks of constant frequency or in blocks of randomly changing frequencies. The tones were presented either in silence or together with broad-band noises of varying levels.  相似文献   

19.
Budgerigars were trained to discriminate complex sounds with two different types of spectral profiles from flat-spectrum, wideband noise. In one case, complex sounds with a sinusoidal ripple in (log) amplitude across (log) frequency bandwidth were generated by combining 201 logarithmically spaced tones covering the frequency region from 500 Hz to 10 kHz. A second type of rippled stimulus was generated by delaying broadband noise and adding it to the original noise in an iterative fashion. In each case, thresholds for modulation depth (i.e., peak-to-valley in dB) were measured at several different ripple frequencies (i.e., cycles/octave for logarithmic profiles) or different repetition pitches (i.e., delay for ripple noises). Budgerigars were similar to humans in detecting ripple at low spatial frequencies, but were considerably more sensitive than humans in detecting ripples in log ripple spectra at high spatial frequencies. Budgerigars were also similar to humans in detecting linear ripple in broadband noise over a wide range of repetition pitches. Taken together, these data show that the avian auditory system is at least as good, if not better, than the human auditory system at detecting spectral ripples in noise despite gross anatomical differences in both the peripheral and central auditory nervous systems.  相似文献   

20.
A mathematical model of the auditory analysis of periodicity of sound and its envelope is proposed. The model consists of a sequence of mathematical transformations that describe the signal processing stages. The following parameters and properties of the auditory system are taken into account: the crude analysis of the input acoustic signal accurate to the width of the aural critical band; the frequency dependence of the width of the aural critical band; the spectrum of the input signal analysis by a set of 3500 filters closely spaced in frequency; the absolute audibility thresholds at a given frequency; the time-domain analysis of both the output signals of each filter and the envelope profile with the help of the periodicity function; the pulsed activity of auditory neurons; the ability of the auditory system to memorize the spectral-time images of the signal and its individual parameters; the ability of the auditory system to form the perception of the loudness of sound, to memorize and compare the loudness of sound at different time moments, and to conclude which of them is higher or lower or whether they are equal accurate to a certain threshold; the dependence of the critical modulation bandwidth on the modulation frequency; and the dependence of the audibility thresholds of amplitude modulation on the modulation frequency. By an example of processing amplitude-modulated signals with various carrier-to-envelope frequency ratios, the model is shown to give a satisfactory explanation of their pitch and auditory estimate of the envelope period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号