首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
压缩真空光输入和平衡零拍探测可有效增强Sagnac效应,提高陀螺精度;考虑平衡零拍探测的相位精度与相位自身相关,仅在某特定相位能达到最佳灵敏度,设计了一种基于光子计数法提取Sagnac输出相位的方案,并利用贝叶斯理论估计相位.理论分析结果表明,该方法能突破散粒噪声极限,相位精度不再受限于相位自身,且当压缩真空光和相干激光功率相同时,精度在理论上能达到海森堡极限.  相似文献   

2.
陈坤  陈树新  吴德伟  杨春燕  吴昊 《物理学报》2016,65(5):54203-054203
利用量子技术增强Sagnac效应提高陀螺输出精度具有重要的研究意义, 是实现全自主导航的重要途径. 以相干态激光作为输入光源的光学陀螺因真空零点波动使其输出精度限制于散粒噪声极限而难以提高. 为减小真空波动的影响, 提出在激光输入的分束器的另一输入端输入压缩真空光并结合平衡零拍探测技术的方法增强Sagnac效应. 理论分析表明Sagnac效应性能得到有效提升: 干涉输出的灵敏度检测极限和动态范围均随着压缩程度的增加而呈指数级增长. 该方法只需对经典光学陀螺做少量改动就可实现, 是提高光学陀螺输出精度的一种新方法.  相似文献   

3.
针对文献[物理学报65 054203]中量子零拍探测技术测量的输出相位精度与相位自身相关,且对本振光、压缩真空光和相干光的相位有严格要求,在理论上设计了一种相干态和压缩真空态的自适应最优估计方法.首先以纯态的方法推导得到相干态和压缩真空态的量子费舍尔信息,sinh~2r+|α|~2e~(2r).设计了一组能使估计误差达到量子Cramer-Rao下界的最优半正定算子值测量算子,但该测量算子需要精确已知所要估计的相位参数.为此,引入了一种自适应估计方法,通过不断更新测量算子和概率函数,利用最大似然估计器逐渐得到相位参数.经理论证明,该方法能以概率1收敛于相位真值,且能达到量子Cramer-Rao下界.  相似文献   

4.
量子度量学主要是利用量子效应来提高参数估计的精度,以期突破标准量子极限,甚至达到海森伯极限.本文研究了一般光子增加双模压缩真空态作为马赫-曾德尔干涉仪的探测态时,在何种情况下能够提高待测相位的测量精度.根据量子Fisher信息理论,尽管在探测态具有相同的平均光子数这一约束条件下,对称的和非对称的光子增加操作并不能提高相位的测量精度.但若是在给定初始压缩参数的情况下,对称的和非对称的光子增加操作却能够增强相位的测量精度.另外,基于宇称测量的研究结果表明,对于对称光子增加双模压缩真空态,只有当待测相位趋于零时,宇称测量才是最优测量.而对于非对称光子增加双模压缩真空态,宇称测量并不是最优测量方案.  相似文献   

5.
文章分析了基于平衡零拍的时间测量的相位问题,给出了以压缩态作为信号场时的量子标准极限,并重点讨论了在实际测量中由于系统不稳定而导致信号场与本底场的相对位相抖动对测量结果的影响.结果表明,利用压缩光的平衡零拍测量,最佳测量结果的压缩度取决于测量系统的相位稳定性.  相似文献   

6.
压缩态光场平衡零拍探测的位相锁定   总被引:1,自引:0,他引:1       下载免费PDF全文
张岩  于旭东  邸克  李卫  张靖 《物理学报》2013,62(8):84204-084204
平衡零拍探测是测量量子光场的重要方法之一. 通过对相位灵敏光学参量放大器注入的信号进行位相调制, 然后利用平衡零拍探测系统测量光学参量放大器输出的压缩光. 将相位灵敏光学参量分别运转在参量放大和参量缩小, 通过观察噪声谱中的调制信号就可确定测量的量子光场是正交振幅或位相分量. 通过解调位相调制信号可获得误差信号, 实现锁定平衡零拍探测系统本底光与待测光场相对位相为零(对应于待测光场振幅噪声分量). 关键词: 平衡零拍探测 位相锁定  相似文献   

7.
徐涵  陈树新  吴昊  陈坤  洪磊 《物理学报》2019,68(2):24204-024204
基于量子理论获取相位参数的导航机制,理论上可以突破经典物理极限对导航精度的限制.利用量子零拍探测对相干态光场相位进行测量时,通常需要相位与之正交的本振光才能使测量精度达到量子标准极限.由于导航信号相位的高非线性特点,想要利用传统的线性锁相环获取完全满足条件的本振光具有一定的难度.为此,本文设计了一种基于容积准则的非线性锁相环,实现了在非正交本振光的条件下对相干态相位进行精确测量的功能.首先,利用相干态的Wigner函数推导了其相位在量子零拍探测的输出结果,设计了量子相位估计的非线性数字锁相环框架.然后基于正交单纯形容积准则设计了非线性滤波算法实现锁相环功能,该锁相环通过对本振相位进行多次状态更新,最终实现非线性迭代估计.实验结果表明,本文方法突破了本振光相位需与相干态相位正交的局限性,避免了传统量子锁相环方法引入的线性化误差,实现了对相干态相位的准确、稳定估计.  相似文献   

8.
压缩态光场作为一种重要的量子光源,在量子计算、量子通信、精密测量等领域有广泛的应用前景.在非临界压缩光场产生的理论预测中,阈值以上泵浦的简并光学参量振荡器(DOPO)产生横向空间分布为一阶厄米高斯模式的非临界压缩光场,具有对泵浦光功率波动鲁棒性的量子特性,因此在实验中具有重要的应用价值.然而该非临界压缩光场的横向幅角随机旋转,导致无法利用本底探针光对其压缩特性进行稳定的平衡零拍实验探测.本文提出利用DOPO同时产生的与压缩光场空间正交的明亮光场作为本底探针光的实验探测方案.理论分析表明,该方案虽然引入了真空噪声,但可以很好地抵消压缩光场空间模式随机旋转引入的探测输出动态波动,得到3 d B的稳定探测结果,且对本底探针光的相位波动具有鲁棒性.因此该探测方案对于非临界压缩光场的实验研究具有重要的实用价值.  相似文献   

9.
利用平衡零拍探测测量电磁诱导透明(EIT)介质中探测场的正交振幅和正交相位噪声谱。在平衡零拍探测系统中通过调节压电陶瓷来改变本振光的光程从而改变本振光与探测光的相对相位,进而测量不同相位对应的探测光的噪声分量。实验中电磁诱导透明介质中探测光与耦合光耦合导致探测光噪声的增大,发现在耦合光不同失谐下对探测光不同正交分量引入的额外噪声是不同的,同时得到了探测光噪声与耦合光功率及分析频率的关系。  相似文献   

10.
在实际测量过程中由于各种条件的限制,如非理想的50…50分束器、本底光与信号光的干涉效率和探测器有限的共模抑制比,都将造成实际测量的结果不能如实反映压缩态的水平。基于平衡零拍探测(BHD)的理论背景,结合干涉效率对压缩度的影响,定量分析了非理想平衡零拍探测系统对测量压缩度的影响,构建了压缩度测量偏差、实际压缩度、50…50分束器的分束比、本底光与信号光的干涉效率和平衡零拍探测器的共模抑制比(CMRR)的关系。该分析结果对于量化压缩度的测量误差、估算压缩光产生系统的实际压缩度有重要意义。  相似文献   

11.
本论文提出并实验演示了一种系统由经典态进入到量子态演化过程的测量方法,对铷原子(87 Rb)蒸汽中,基于光偏振自旋转效应产生的脉冲真空压缩光的建立过程进行了研究,描述了脉冲光场从经典热态到真空压缩态的噪声涨落变化。脉冲真空压缩光的压缩度为-1.1dB。具体实验上,先采用平衡零拍探测方法测量了脉冲真空压缩光的正交分量,然后通过对正交分量做相位平均统计处理,得到了信号光场平均光子数随时间的变化分布,观测到75μs的压缩态建立时间。本文的实验方法为将来基于原子吸收线的短脉冲压缩光的产生打下实验基础,并为经典态和量子态的转换过程的研究提供一种可行的实验测量方案。  相似文献   

12.
与单光子量子密钥分配采用单光子探测器不同,连续变量量子密钥分配采用平衡零拍测量技术.分析了由于参考光的真空噪声、分束器的透射率和反射率不相等引入的平衡零拍测量误差,以及平衡零拍测量探测器的电子噪声对连续变量量子密钥传输的最大安全距离的限制,给出了平衡零拍测量的探测噪声、电子噪声和密钥量之间的定量表达式.  相似文献   

13.
刘增俊  翟泽辉  孙恒信  郜江瑞 《物理学报》2016,65(6):60401-060401
低频压缩态光场可用于提高引力波探测器灵敏度, 近年来受到人们的广泛关注. 相对于高频段而言, 低频压缩态的产生更容易受到外界环境噪声的干扰而不易被观察到. 本文采用全固化单频倍频Nd: YVO4/KTP激光器作为光源, 利用双波长共振的光学参量振荡器实现参量过程, 以1064 nm波长的红外作为基频光, 激光器腔内倍频产生的532 nm绿光作为抽运光, 通过调节周期性极化磷酸氧钛钾晶体温度使光学参量振荡器达到双波长同时共振, 采用真空注入的方式, 利用Pound-Drever-Hall锁腔技术锁定抽运场. 输出压缩光通过平衡零拍探测, 最终在实验上获得了频率低至3 kHz的真空压缩, 所直接观察到的压缩度为2 dB.  相似文献   

14.
叶晨光  张靖 《物理学报》2008,57(11):6962-6967
通过光学腔内置周期极化磷酸氧钛晶体的连续光学参量振荡器,以532nm光场为抽运场,产生1064nm的真空压缩态光场,利用平衡零拍探测技术得到3.41dB的实测压缩度,并采用量子层析技术重构出真空压缩态光场在相空间的Wigner准概率分布函数. 关键词: 真空压缩态光场 光学参量振荡器 量子层析 Wigner准概率分布函数  相似文献   

15.
李诗宇  田剑锋  杨晨  左冠华  张玉驰  张天才 《物理学报》2018,67(23):234202-234202
研究了强度差测量方案下,探测器量子效率对光子数态、关联数态、压缩真空态三种量子光源注入的马赫-曾德尔干涉仪相位测量灵敏度的影响.获得了相位测量灵敏度与效率的定量关系,比较了探测效率对不同量子态注入的干涉仪相位灵敏度的影响.研究表明:光子数态注入时,相位测量灵敏度始终不能超越标准量子极限;关联数态注入时,无论多大的光子数,要获得相位测量的量子增强,探测效率不得小于75%;对于压缩真空态,只要有压缩存在就可以获得一定的相位测量的量子增强;关联数态、压缩真空态的注入,相位灵敏度皆随探测效率的增大而不同程度的提高,且压缩真空态比关联数态具有更好的量子增强效果.给出了在量子增强的精密测量实验中对探测效率的要求,并结合实际应用说明了探测效率的提高有助于提高干涉仪探测的灵敏度.  相似文献   

16.
吕纯海  谭磊  谭文婷 《物理学报》2011,60(2):24204-024204
从主方程出发,通过解析求解密度矩阵非对角元,研究了压缩真空中Λ型三能级原子的电磁诱导透明现象(EIT).研究结果表明:EIT显著地依赖于相干光场的相位、压缩真空的压缩强度和压缩相位.Λ型三能级原子不但有电磁诱导透明和慢光速现象,而且还会表现出对探测光的增益、快光速和反向光速效应;且Λ型三能级原子对探测光场的吸收和增益与探测光强度有关,这与普通真空中不同. 关键词: 压缩真空 电磁诱导透明 增益  相似文献   

17.
吴穹  于晋龙  王菊  王文睿  贾石  黄港膑  黑克非  李丽娟 《物理学报》2015,64(4):44205-044205
目前光学陀螺的主要工作原理是Sagnac效应, 如何提高Sagnac效应的测量精度是提高陀螺精度的一个重要研究课题. 传统的光学陀螺利用光短波长的特性来提高检测精度. 但考虑到微波的相位(频率)检测精度远高于光波的相位(频率)检测精度, 如果能够利用微波实现Sagnac效应的检测, 就能得到比光学陀螺更高的检测精度, 从而为实现高精度的微波陀螺提供了可能. 利用基于光电振荡器的光载微波结构实现了微波Sagnac效应的检测. 实验结果证明了微波检测Sagnac效应的可行性, 为将来实现高精度的微波谐振陀螺打下基础.  相似文献   

18.
我们采用周期极化KTP晶体为非线性介质,通过光学参量振荡器运转于阈值以下的简并参量振荡过程,产生了单模正交压缩真空态光场,在泵浦功率为123mW,Local光功率为842uW,晶体温度为32.1摄氏度时我们使用平衡零拍探测法测得输出场噪声功率低于散粒噪声基准3.41dB。  相似文献   

19.
温馨  韩亚帅  刘金玉  白乐乐  何军  王军民 《物理学报》2018,67(2):24207-024207
基于PPKTP晶体的阈值以下光学参量振荡(OPO)过程,制备了共振于铷原子D1线795 nm的压缩真空态光场,研究了分析频率处于千赫兹范围的主要噪声来源,特别是795 nm激光及其二次谐波397.5 nm激光在晶体内吸收引起的非线性损耗增加和系统热不稳定的问题(397.5 nm激光处于PPKTP晶体透光范围边缘,具有高于其他波长数倍的吸收系数).以795 nm和1064 nm为例,分析了非线性损耗及晶体内热效应对压缩度的影响.受限于以上因素,795 nm压缩光很难得到1064 nm波段同样的压缩度.探测系统中的噪声耦合则限制了压缩频带.实验上对分析频率为千赫兹的经典噪声进行了有效控制,通过使用真空注入的OPO、垂直偏振及反向传输的腔长锁定光、低噪声的平衡零拍探测器、高稳定度的实验系统及量子噪声锁定等方法,最终在2.6—100 kHz的分析频段得到了约2.8 dB的795 nm压缩真空.该压缩光可用作磁场测量系统的探测光以提高测量灵敏度.  相似文献   

20.
纳米分辨相干反斯托克斯拉曼散射显微成像   总被引:1,自引:0,他引:1       下载免费PDF全文
张赛文  陈丹妮  刘双龙  刘伟  牛憨笨 《物理学报》2015,64(22):223301-223301
采用附加探测光声子耗尽法来实现超衍射极限相干反斯托克斯拉曼散射显微成像. 此方法引入一束环形分布的附加探测光来消耗点扩展函数周边的相干声子, 实现点扩展函数的改造, 从而达到超越衍射极限的空间分辨率. 为了获得更高的空间分辨率和更佳的相位匹配条件, 通常需采用高数值孔径物镜对抽运光、斯托克斯光和探测光进行聚焦, 此时标量衍射理论不再成立. 基于矢量衍射理论, 分析了线偏振光、圆偏振光先后经过螺旋相位片和高数值孔径物镜后的光强分布, 结果表明: 圆偏振光在高数值孔径物镜后焦平面的光强分布呈中心对称状, 较线偏振环形光更适合作为附加探测光. 此外, 采用全量子理论分析了附加探测光声子耗尽法. 结果表明: 当附加探测光与探测光强度比为80时, 成像系统的横向空间分辨率可以达到45 nm; 继续提高附加探测光强度, 空间分辨将进一步提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号